Citation:
V. A. Zorich, V. M. Kesel'man, “On the Conformal Type of a Riemannian Manifold”, Funktsional. Anal. i Prilozhen., 30:2 (1996), 40–55; Funct. Anal. Appl., 30:2 (1996), 106–117
\Bibitem{ZorKes96}
\by V.~A.~Zorich, V.~M.~Kesel'man
\paper On the Conformal Type of a Riemannian Manifold
\jour Funktsional. Anal. i Prilozhen.
\yr 1996
\vol 30
\issue 2
\pages 40--55
\mathnet{http://mi.mathnet.ru/faa520}
\crossref{https://doi.org/10.4213/faa520}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1402080}
\zmath{https://zbmath.org/?q=an:0873.53025}
\transl
\jour Funct. Anal. Appl.
\yr 1996
\vol 30
\issue 2
\pages 106--117
\crossref{https://doi.org/10.1007/BF02509450}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VW86100003}
Linking options:
https://www.mathnet.ru/eng/faa520
https://doi.org/10.4213/faa520
https://www.mathnet.ru/eng/faa/v30/i2/p40
This publication is cited in the following 39 articles:
Shihshu Walter Wei, Jun-Fang Li, Lina Wu, “p-Parabolicity and a Generalized Bochner's Method with Applications”, La Matematica, 2024
Anders Björn, Jana Björn, “Condenser capacities and capacitary potentials for unbounded sets, and global
p
-harmonic Green functions on metric spaces”, Communications in Partial Differential Equations, 49:10-12 (2024), 938
Anders Björn, Jana Björn, Juha Lehrbäck, “Volume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions”, JAMA, 150:1 (2023), 159
Wang Weihan, Zhao Wei, “On the capacity of Finsler metric measure spaces”, Sci. Sin.-Math., 53:3 (2023), 481
T. R. Igonina, V. M. Keselman, O. R. Paraskevopulo, “Some criteria of capacitive type of a noncompact Riemannian manifold”, Moscow University Mathematics Bulletin, 77:2 (2022), 89–92
V. A. Zorich, “On a question of Gromov concerning the generalized Liouville theorem”, Russian Math. Surveys, 74:1 (2019), 175–177
V. M. Keselman, “The concept and criteria of the capacitive type of the non-compact Riemannian manifold based on the generalized capacity”, Mathematical Physics and Computer Simulation, 22:2 (2019), 21–32
V. A. Zorich, “Some observations concerning multidimensional quasiconformal mappings”, Sb. Math., 208:3 (2017), 377–398
V. A. Zorich, “Boundary behaviour of automorphisms of a hyperbolic space”, Russian Math. Surveys, 72:4 (2017), 645–670
V. M. Keselman, “On a criterion of conformal parabolicity of a Riemannian manifold”, Sb. Math., 206:3 (2015), 389–420
V. A. Zorich, “Asymptotic behavior at infinity of the admissible growth of the quasiconformality coefficient and the injectivity of immersions of sub-Riemannian manifolds”, Proc. Steklov Inst. Math., 279 (2012), 73–77
V. A. Zorich, “On the measure of conformal difference between Euclidean and Lobachevsky spaces”, Sb. Math., 202:12 (2011), 1825–1830
Grosse N., “The Hijazi inequality on conformally parabolic manifolds”, Differential Geom Appl, 29:6 (2011), 838–849
Pankka P., Rajala K., “Quasiregularly elliptic link complements”, Geom Dedicata, 154:1 (2011), 1–8
V. M. Kesel'man, “The relative isoperimetric inequality on a conformally parabolic manifold with boundary”, Russian Math. Surveys, 65:2 (2010), 384–385
Gol'dshtein V., Troyanov M., “A Conformal de Rham Complex”, J Geom Anal, 20:3 (2010), 651–669
V. M. Kesel'man, “The isoperimetric inequality on conformally parabolic manifolds”, Sb. Math., 200:1 (2009), 1–33
Grimaldi, R, “Calibrations and isoperimetric profiles”, American Journal of Mathematics, 129:2 (2007), 315
V. A. Zorich, “Contact Quasiconformal Immersions”, Proc. Steklov Inst. Math., 253 (2006), 71–77