Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2023, Volume 57, Issue 1, Pages 3–23
DOI: https://doi.org/10.4213/faa4000
(Mi faa4000)
 

On a sharp lower bound for the Tjurina number of zero-dimensional complete intersections

A. G. Aleksandrov

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow
References:
Abstract: As is known, for isolated hypersurface singularities and complete intersections of positive dimension, the Milnor number is the least upper bound for the Tjurina number, i.e., τμ. In this paper we show that, for zero-dimensional complete intersections, the reverse inequality holds. The proof is based on properties of faithful modules over an Artinian local ring. We also exploit simple properties of the annihilator and the socle of the modules of Kähler differentials and derivations and the theory of duality in the cotangent complex of zero-dimensional singularities.
Keywords: Artinian algebras, faithful modules, annihilator, socle, Kähler differentials, derivations, almost complete intersections, duality, cotangent complex.
Received: 02.04.2022
Revised: 07.11.2022
Accepted: 12.12.2022
English version:
Functional Analysis and Its Applications, 2023, Volume 57, Issue 1, Pages 1–17
DOI: https://doi.org/10.1134/S001626632301001X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. G. Aleksandrov, “On a sharp lower bound for the Tjurina number of zero-dimensional complete intersections”, Funktsional. Anal. i Prilozhen., 57:1 (2023), 3–23; Funct. Anal. Appl., 57:1 (2023), 1–17
Citation in format AMSBIB
\Bibitem{Ale23}
\by A.~G.~Aleksandrov
\paper On a sharp lower bound for the Tjurina number of zero-dimensional complete intersections
\jour Funktsional. Anal. i Prilozhen.
\yr 2023
\vol 57
\issue 1
\pages 3--23
\mathnet{http://mi.mathnet.ru/faa4000}
\crossref{https://doi.org/10.4213/faa4000}
\transl
\jour Funct. Anal. Appl.
\yr 2023
\vol 57
\issue 1
\pages 1--17
\crossref{https://doi.org/10.1134/S001626632301001X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85169896167}
Linking options:
  • https://www.mathnet.ru/eng/faa4000
  • https://doi.org/10.4213/faa4000
  • https://www.mathnet.ru/eng/faa/v57/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :43
    References:49
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025