Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 1999, Volume 33, Issue 4, Pages 25–37
DOI: https://doi.org/10.4213/faa378
(Mi faa378)
 

This article is cited in 12 scientific papers (total in 12 papers)

Three-Page Approach to Knot Theory. Encoding and Local Moves

I. A. Dynnikov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In the present paper, we suggest a new combinatorial approach to knot theory based on embeddings of knots and links into a union of three half-planes with the same boundary. The restriction of the number of pages to three (or any other number 3) provides a convenient way to encode links by words in a finite alphabet. For those words, we give a finite set of local changes that realizes the equivalence of links by analogy with the Reidemeister moves for planar link diagrams.
Received: 12.05.1999
English version:
Functional Analysis and Its Applications, 1999, Volume 33, Issue 4, Pages 260–269
DOI: https://doi.org/ 10.1007/BF02467109 https://doi.org/ 10.1007/BF02467109
Bibliographic databases:
Document Type: Article
UDC: 515.164.63
Language: Russian
Citation: I. A. Dynnikov, “Three-Page Approach to Knot Theory. Encoding and Local Moves”, Funktsional. Anal. i Prilozhen., 33:4 (1999), 25–37; Funct. Anal. Appl., 33:4 (1999), 260–269
Citation in format AMSBIB
\Bibitem{Dyn99}
\by I.~A.~Dynnikov
\paper Three-Page Approach to Knot Theory. Encoding and Local Moves
\jour Funktsional. Anal. i Prilozhen.
\yr 1999
\vol 33
\issue 4
\pages 25--37
\mathnet{http://mi.mathnet.ru/faa378}
\crossref{https://doi.org/10.4213/faa378}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1746427}
\zmath{https://zbmath.org/?q=an:0947.57005}
\transl
\jour Funct. Anal. Appl.
\yr 1999
\vol 33
\issue 4
\pages 260--269
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000086100900002}
Linking options:
  • https://www.mathnet.ru/eng/faa378
  • https://doi.org/10.4213/faa378
  • https://www.mathnet.ru/eng/faa/v33/i4/p25
  • This publication is cited in the following 12 articles:
    1. Morozov A., Smirnov A., “Chern–Simons theory in the temporal gauge and knot invariants through the universal quantum R-matrix”, Nuclear Phys B, 835:3 (2010), 284–313  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    2. Kearton, C, “All 2-dimensional links in 4-space live inside a universal 3-dimensional polyhedron”, Algebraic and Geometric Topology, 8:3 (2008), 1223  crossref  mathscinet  zmath  isi  scopus
    3. Kurlin, V, “Three-page encoding and complexity theory for spatial graphs”, Journal of Knot Theory and Its Ramifications, 16:1 (2007), 59  crossref  mathscinet  zmath  isi  scopus
    4. Dujmovic, V, “Stacks, queues and tracks: Layouts of graph subdivisions”, Discrete Mathematics and Theoretical Computer Science, 7:1 (2005), 155  mathscinet  zmath  isi
    5. V. V. Vershinin, V. A. Kurlin, “Three-Page Embeddings of Singular Knots”, Funct. Anal. Appl., 38:1 (2004), 14–27  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. V. A. Kurlin, “Basic embeddings of graphs and Dynnikov's three-page embedding method”, Russian Math. Surveys, 58:2 (2003), 372–374  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. I. A. Dynnikov, “Recognition algorithms in knot theory”, Russian Math. Surveys, 58:6 (2003), 1093–1139  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. Andreeva M.V., Dynnikov I.A., Polthier K., “A mathematical webservice for recognizing the unknot”, Mathematical Software, Proceedings, 2002, 201–207  crossref  zmath  isi
    9. Dynnikov, IA, “A new way to represent links. One-dimensional formalism and untangling technology”, Acta Applicandae Mathematicae, 69:3 (2001), 243  crossref  mathscinet  zmath  isi  scopus
    10. V. A. Kurlin, “Dynnikov Three-Page Diagrams of Spatial 3-Valent Graphs”, Funct. Anal. Appl., 35:3 (2001), 230–233  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. I. A. Dynnikov, “Three-Page Approach to Knot Theory. Universal Semigroup”, Funct. Anal. Appl., 34:1 (2000), 24–32  mathnet  crossref  crossref  mathscinet  zmath  isi
    12. I. A. Dynnikov, “Finitely Presented Groups and Semigroups in Knot Theory”, Proc. Steklov Inst. Math., 231 (2000), 220–237  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:746
    Full-text PDF :350
    References:72
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025