Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2015, Volume 49, Issue 1, Pages 1–17
DOI: https://doi.org/10.4213/faa3178
(Mi faa3178)
 

This article is cited in 2 scientific papers (total in 2 papers)

The Index of Differential Forms on Complete Intersections

A. G. Aleksandrov

V. A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow
Full-text PDF (239 kB) Citations (2)
References:
Abstract: The article is devoted to the development of a homological approach to the problem of calculating the local topological index of holomorphic differential $1$-forms given on complex space. In the study of complete intersections our method is based on the construction of Lebelt and Cousin resolutions, as well as on the simplest properties of the generalized and usual Koszul complexes, regular meromorphic differential forms, and the residue map. In particular, we show that the index of a differential $1$-form with an isolated singularity is equal to the dimension of the local analytical algebra of a zero-dimensional germ which is determined by the ideal generated by the interior product of the form and all Hamiltonian vector fields of the complete intersection. Moreover, in the quasihomogeneous case, the index can be expressed explicitly in terms of values of classical symmetric functions. We also discuss some other methods for computing the homological index of $1$-forms given on analytic spaces with singularities of various types.
Keywords: index of differential forms, homological index, isolated complete intersection singularities, de Rham complex, Koszul complex, regular meromorphic forms.
Received: 15.02.2013
English version:
Functional Analysis and Its Applications, 2015, Volume 49, Issue 1, Pages 1–14
DOI: https://doi.org/10.1007/s10688-015-0078-z
Bibliographic databases:
Document Type: Article
UDC: 515.17
Language: Russian
Citation: A. G. Aleksandrov, “The Index of Differential Forms on Complete Intersections”, Funktsional. Anal. i Prilozhen., 49:1 (2015), 1–17; Funct. Anal. Appl., 49:1 (2015), 1–14
Citation in format AMSBIB
\Bibitem{Ale15}
\by A.~G.~Aleksandrov
\paper The Index of Differential Forms on Complete Intersections
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 1
\pages 1--17
\mathnet{http://mi.mathnet.ru/faa3178}
\crossref{https://doi.org/10.4213/faa3178}
\zmath{https://zbmath.org/?q=an:06485781}
\elib{https://elibrary.ru/item.asp?id=23421400}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 1
\pages 1--14
\crossref{https://doi.org/10.1007/s10688-015-0078-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000351307000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924942546}
Linking options:
  • https://www.mathnet.ru/eng/faa3178
  • https://doi.org/10.4213/faa3178
  • https://www.mathnet.ru/eng/faa/v49/i1/p1
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:550
    Full-text PDF :182
    References:64
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025