Abstract:
Necessary and sufficient conditions are found for the almost sure convergence of almost all simple rearrangements of a series of Banach space valued random variables. The results go back to Nikishin's well-known theorem on the existence of an almost surely convergent rearrangement of a numerical random series. An example is also given of a numerical random series with general term tending to zero almost surely such that this series converges in probability and any its rearrangement diverges almost surely.
Keywords:
rearrangement of a series in a Banach space, almost sure convergence, k-simple permutation, Nikishin's theorem.
Citation:
Sh. Levental, V. S. Mandrekar, S. A. Chobanyan, “Towards Nikishin's Theorem on the Almost Sure Convergence of Rearrangements of Functional Series”, Funktsional. Anal. i Prilozhen., 45:1 (2011), 41–55; Funct. Anal. Appl., 45:1 (2011), 33–45
\Bibitem{LevManCho11}
\by Sh.~Levental, V.~S.~Mandrekar, S.~A.~Chobanyan
\paper Towards Nikishin's Theorem on the Almost Sure Convergence of Rearrangements of Functional Series
\jour Funktsional. Anal. i Prilozhen.
\yr 2011
\vol 45
\issue 1
\pages 41--55
\mathnet{http://mi.mathnet.ru/faa3026}
\crossref{https://doi.org/10.4213/faa3026}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2848739}
\zmath{https://zbmath.org/?q=an:1271.60011}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 1
\pages 33--45
\crossref{https://doi.org/10.1007/s10688-011-0004-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288557800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952808116}
Linking options:
https://www.mathnet.ru/eng/faa3026
https://doi.org/10.4213/faa3026
https://www.mathnet.ru/eng/faa/v45/i1/p41
This publication is cited in the following 7 articles:
Sergei Chobanyan, Shlomo Levental, “Maximum inequalities in rearrangements of orthogonal series”, Georgian Mathematical Journal, 29:6 (2022), 823
Mukeru S., “On the Convergence of Series of Dependent Random Variables”, J. Theor. Probab., 34:3 (2021), 1299–1320
Charatonik W.J., Samulewicz A., Witula R., “Limit sets in normed linear spaces”, Colloq. Math., 147:1 (2017), 35–42
S. Chobanyan, G. Giorgobiani, V. Kvaratskhelia, Sh. Levental, V. Tarieladze, “On rearrangement theorems in Banach spaces”, Georgian Math. J., 21:2 (2014), 157–163
Theory Probab. Appl., 59:4 (2015), 677–684
Chobanyan S., Levental S., “Contraction principle for tail probabilities of sums of exchangeable random vectors with multipliers”, Statist. Probab. Lett., 83:7 (2013), 1720–1724
Chobanyan S., Leyental S., Mandrekar V., “Almost surely convergent summands of a random sum”, Statist. Probab. Lett., 82:1 (2012), 212–216