Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2010, Volume 44, Issue 4, Pages 14–20
DOI: https://doi.org/10.4213/faa3011
(Mi faa3011)
 

This article is cited in 13 scientific papers (total in 13 papers)

Spectral Asymptotics for the Sturm–Liouville Operator with Point Interaction

R. S. Ismagilova, A. G. Kostyuchenkob

a N. E. Bauman Moscow State Technical University
b M. V. Lomonosov Moscow State University
References:
Abstract: For the Sturm–Liouville operator with point interaction, weak asymptotics of the discrete spectrum are found. A class of operators for which zero is the unique spectrum accumulation point is specified.
Keywords: point interaction, spectrum, asymptotics, alternating sequences.
Received: 12.05.2010
English version:
Functional Analysis and Its Applications, 2010, Volume 44, Issue 4, Pages 253–258
DOI: https://doi.org/10.1007/s10688-010-0036-8
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: R. S. Ismagilov, A. G. Kostyuchenko, “Spectral Asymptotics for the Sturm–Liouville Operator with Point Interaction”, Funktsional. Anal. i Prilozhen., 44:4 (2010), 14–20; Funct. Anal. Appl., 44:4 (2010), 253–258
Citation in format AMSBIB
\Bibitem{IsmKos10}
\by R.~S.~Ismagilov, A.~G.~Kostyuchenko
\paper Spectral Asymptotics for the Sturm--Liouville Operator with Point Interaction
\jour Funktsional. Anal. i Prilozhen.
\yr 2010
\vol 44
\issue 4
\pages 14--20
\mathnet{http://mi.mathnet.ru/faa3011}
\crossref{https://doi.org/10.4213/faa3011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768561}
\zmath{https://zbmath.org/?q=an:1271.47039}
\transl
\jour Funct. Anal. Appl.
\yr 2010
\vol 44
\issue 4
\pages 253--258
\crossref{https://doi.org/10.1007/s10688-010-0036-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288487100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650684323}
Linking options:
  • https://www.mathnet.ru/eng/faa3011
  • https://doi.org/10.4213/faa3011
  • https://www.mathnet.ru/eng/faa/v44/i4/p14
  • This publication is cited in the following 13 articles:
    1. Budyka V.S., Malamud M.M., “Deficiency Indices and Discreteness Property of Block Jacobi Matrices and Dirac Operators With Point Interactions”, J. Math. Anal. Appl., 506:1 (2022), 125582  crossref  mathscinet  isi
    2. Robert Fulsche, Medet Nursultanov, “Spectral theory for Sturm–Liouville operators with measure potentials through Otelbaev's function”, Journal of Mathematical Physics, 63:1 (2022)  crossref
    3. Kritskov L.V., “Uniform, on the entire axis, convergence of the spectral expansion for Schrödinger operator with a potential-distribution”, Differ. Equ., 53:2 (2017), 180–191  crossref  mathscinet  zmath  isi  scopus
    4. Aleksandra Yu. Ananieva, “1-D Schrödinger Operators with Local Interactions on a Discrete Set with Unbounded Potential”, J Math Sci, 220:5 (2017), 554  crossref
    5. A. Yu. Anan'eva, “One-Dimensional Schrödinger Operator with Unbounded Potential and Point Interactions”, Math. Notes, 99:5 (2016), 769–773  mathnet  crossref  crossref  mathscinet  isi  elib
    6. Medet Nursultanov, “Spectral Properties of the Schrödinger Operator with δδ-Distribution”, Math. Notes, 100:2 (2016), 263–275  mathnet  crossref  crossref  mathscinet  isi  elib
    7. A. Kostenko, M. Malamud, “Spectral theory of semibounded Schródinger operators with δ-interactions”, Ann. Henri Poincare, 15:3 (2014), 501–541  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    8. Carlone R., Malamud M., Posilicano A., “On the Spectral Theory of Gesztesy-Seba Realizations of 1-D Dirac Operators with Point Interactions on a Discrete Set”, J. Differ. Equ., 254:9 (2013), 3835–3902  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    9. Golovaty Yu., “1D Schrodinger Operators with Short Range Interactions: Two-Scale Regularization of Distributional Potentials”, Integr. Equ. Oper. Theory, 75:3 (2013), 341–362  crossref  mathscinet  zmath  isi  elib  scopus
    10. Golovaty Yu.D., Hryniv R.O., “Norm resolvent convergence of singularly scaled Schrödinger operators and δ-potentials”, Proc. R. Soc. Edinb. Sect. A-Math., 143:4 (2013), 791–816  crossref  mathscinet  zmath  isi  scopus
    11. Albeverio S., Kostenko A., Malamud M., Neidhardt H., “Spherical Schrodinger Operators with Delta-Type Interactions”, J. Math. Phys., 54:5 (2013), 052103  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    12. Markov V.G., “Nekotorye svoistva neznakoopredelennykh operatorov Shturma-Liuvillya”, Matematicheskie zametki YaGU, 19:1 (2012), 44–59  zmath  elib
    13. V.A. Derkach, S. Hassi, M.M. Malamud, H.S.V. de Snoo, Operator Methods for Boundary Value Problems, 2012, 161  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:659
    Full-text PDF :309
    References:87
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025