Abstract:
For the Sturm–Liouville operator with point interaction, weak asymptotics of the discrete spectrum are found. A class of operators for which zero is the unique spectrum accumulation point is specified.
Keywords:
point interaction, spectrum, asymptotics, alternating sequences.
Citation:
R. S. Ismagilov, A. G. Kostyuchenko, “Spectral Asymptotics for the Sturm–Liouville Operator with Point Interaction”, Funktsional. Anal. i Prilozhen., 44:4 (2010), 14–20; Funct. Anal. Appl., 44:4 (2010), 253–258
\Bibitem{IsmKos10}
\by R.~S.~Ismagilov, A.~G.~Kostyuchenko
\paper Spectral Asymptotics for the Sturm--Liouville Operator with Point Interaction
\jour Funktsional. Anal. i Prilozhen.
\yr 2010
\vol 44
\issue 4
\pages 14--20
\mathnet{http://mi.mathnet.ru/faa3011}
\crossref{https://doi.org/10.4213/faa3011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768561}
\zmath{https://zbmath.org/?q=an:1271.47039}
\transl
\jour Funct. Anal. Appl.
\yr 2010
\vol 44
\issue 4
\pages 253--258
\crossref{https://doi.org/10.1007/s10688-010-0036-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288487100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650684323}
Linking options:
https://www.mathnet.ru/eng/faa3011
https://doi.org/10.4213/faa3011
https://www.mathnet.ru/eng/faa/v44/i4/p14
This publication is cited in the following 13 articles:
Budyka V.S., Malamud M.M., “Deficiency Indices and Discreteness Property of Block Jacobi Matrices and Dirac Operators With Point Interactions”, J. Math. Anal. Appl., 506:1 (2022), 125582
Robert Fulsche, Medet Nursultanov, “Spectral theory for Sturm–Liouville operators with measure potentials through Otelbaev's function”, Journal of Mathematical Physics, 63:1 (2022)
Kritskov L.V., “Uniform, on the entire axis, convergence of the spectral expansion for Schrödinger operator with a potential-distribution”, Differ. Equ., 53:2 (2017), 180–191
Aleksandra Yu. Ananieva, “1-D Schrödinger Operators with Local Interactions on a Discrete Set with Unbounded Potential”, J Math Sci, 220:5 (2017), 554
A. Yu. Anan'eva, “One-Dimensional Schrödinger Operator with Unbounded Potential and Point Interactions”, Math. Notes, 99:5 (2016), 769–773
Medet Nursultanov, “Spectral Properties of the Schrödinger Operator with δδ-Distribution”, Math. Notes, 100:2 (2016), 263–275
A. Kostenko, M. Malamud, “Spectral theory of semibounded Schródinger operators with δ′-interactions”, Ann. Henri Poincare, 15:3 (2014), 501–541
Carlone R., Malamud M., Posilicano A., “On the Spectral Theory of Gesztesy-Seba Realizations of 1-D Dirac Operators with Point Interactions on a Discrete Set”, J. Differ. Equ., 254:9 (2013), 3835–3902
Golovaty Yu., “1D Schrodinger Operators with Short Range Interactions: Two-Scale Regularization of Distributional Potentials”, Integr. Equ. Oper. Theory, 75:3 (2013), 341–362
Golovaty Yu.D., Hryniv R.O., “Norm resolvent convergence of singularly scaled Schrödinger operators and δ′-potentials”, Proc. R. Soc. Edinb. Sect. A-Math., 143:4 (2013), 791–816
Albeverio S., Kostenko A., Malamud M., Neidhardt H., “Spherical Schrodinger Operators with Delta-Type Interactions”, J. Math. Phys., 54:5 (2013), 052103