Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2007, Volume 41, Issue 2, Pages 93–110
DOI: https://doi.org/10.4213/faa2863
(Mi faa2863)
 

This article is cited in 13 scientific papers (total in 13 papers)

Dissipative Operators in the Krein Space. Invariant Subspaces and Properties of Restrictions

A. A. Shkalikov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We prove that a dissipative operator in the Krein space has a maximal nonnegative invariant subspace provided that the operator admits matrix representation with respect to the canonical decomposition of the space and the upper right operator in this representation is compact relative to the lower right operator. Under the additional assumption that the upper and lower left operators are bounded (the so-called Langer condition), this result was proved (in increasing order of generality) by Pontryagin, Krein, Langer, and Azizov. We relax the Langer condition essentially and prove under the new assumptions that a maximal dissipative operator in the Krein space has a maximal nonnegative invariant subspace such that the spectrum of its restriction to this subspace lies in the left half-plane. Sufficient conditions are found for this restriction to be the generator of a holomorphic semigroup or a C0-semigroup.
Keywords: dissipative operator, Pontryagin space, Krein space, invariant subspace, C0-semigroup, holomorphic semigroup.
Received: 12.01.2007
English version:
Functional Analysis and Its Applications, 2007, Volume 41, Issue 2, Pages 154–167
DOI: https://doi.org/10.1007/s10688-007-0014-y
Bibliographic databases:
Document Type: Article
UDC: 517.9+517.43
Language: Russian
Citation: A. A. Shkalikov, “Dissipative Operators in the Krein Space. Invariant Subspaces and Properties of Restrictions”, Funktsional. Anal. i Prilozhen., 41:2 (2007), 93–110; Funct. Anal. Appl., 41:2 (2007), 154–167
Citation in format AMSBIB
\Bibitem{Shk07}
\by A.~A.~Shkalikov
\paper Dissipative Operators in the Krein Space. Invariant Subspaces and Properties of Restrictions
\jour Funktsional. Anal. i Prilozhen.
\yr 2007
\vol 41
\issue 2
\pages 93--110
\mathnet{http://mi.mathnet.ru/faa2863}
\crossref{https://doi.org/10.4213/faa2863}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2345043}
\zmath{https://zbmath.org/?q=an:05206866}
\elib{https://elibrary.ru/item.asp?id=9521282}
\transl
\jour Funct. Anal. Appl.
\yr 2007
\vol 41
\issue 2
\pages 154--167
\crossref{https://doi.org/10.1007/s10688-007-0014-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000248280900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547500472}
Linking options:
  • https://www.mathnet.ru/eng/faa2863
  • https://doi.org/10.4213/faa2863
  • https://www.mathnet.ru/eng/faa/v41/i2/p93
  • This publication is cited in the following 13 articles:
    1. Carsten Trunk, Operator Theory, 2024, 1  crossref
    2. Langer H., Tretter Ch., “Maximal J-Semi-Definite Invariant Subspaces of Unbounded J-Selfadjoint Operators in Krein Spaces”, J. Math. Anal. Appl., 494:2 (2021), 124597  crossref  mathscinet  zmath  isi
    3. Makarov K.A., Schmitz S., Seelmann A., “On Invariant Graph Subspaces”, Integr. Equ. Oper. Theory, 85:3 (2016), 399–425  crossref  mathscinet  zmath  isi  elib  scopus
    4. Carsten Trunk, Operator Theory, 2015, 241  crossref
    5. Pyatkov S.G., “Existence of Maximal Semidefinite Invariant Subspaces and Semigroup Properties of Some Classes of Ordinary Differential Operators”, Oper. Matrices, 8:1 (2014), 237–254  crossref  mathscinet  zmath  isi  elib  scopus
    6. Carsten Trunk, Operator Theory, 2014, 1  crossref
    7. Kapitula T., Hibma E., Kim H.-P., Timkovich J., “Instability Indices for Matrix Polynomials”, Linear Alg. Appl., 439:11 (2013), 3412–3434  crossref  mathscinet  zmath  isi  scopus
    8. S. G. Pyatkov, “On the existence of maximal semidefinite invariant subspaces for $J$-dissipative operators”, Sb. Math., 203:2 (2012), 234–256  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Markov V.G., “Nekotorye svoistva neznakoopredelennykh operatorov Shturma-Liuvillya”, Matematicheskie zametki YaGU, 19:1 (2012), 44–59  zmath  elib
    10. Wanjala G., “The Invariant Subspace Problem for Absolutely P-Summing Operators in Krein Spaces”, J. Inequal. Appl., 2012, 254  crossref  mathscinet  zmath  isi  elib  scopus
    11. S. G. Pyatkov, Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations, 2012, 549  crossref
    12. Azizov T.Ya., Behrndt J., Jonas P., Trunk C., “Spectral points of definite type and type $\pi$ for linear operators and relations in Krein spaces”, J. Lond. Math. Soc. (2), 83:3 (2011), 768–788  crossref  mathscinet  zmath  isi  scopus
    13. Strauss M., “Spectral estimates and basis properties for self-adjoint block operator matrices”, Integral Equations Operator Theory, 67:2 (2010), 257–277  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:1009
    Full-text PDF :341
    References:136
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025