Abstract:
We solve Tikhomirov's problem on the explicit computation of sharp constants in the Kolmogorov type inequalities
|f(k)(0)|⩽An,k(∫+∞0(|f(x)|2+|f(n)(x)|2)dx)1/2.
Specifically, we prove that
An,k=(sinπ(2k+1)2n)−1/2k∏s=1cotπs2n
for all n∈{1,2,…} and k∈{0,…,n−1}. We establish symmetry and regularity properties of the numbers An,k and study their asymptotic behavior as n→∞ for the cases k=O(n2/3) and k/n→α∈(0,1).
Similar problems were previously studied by Gabushin and Taikov.
Keywords:
extrapolation with minimal norm, Lagrange optimality principle, inversion of special matrices.
Citation:
G. A. Kalyabin, “Sharp Constants in Inequalities for Intermediate Derivatives (the Gabushin Case)”, Funktsional. Anal. i Prilozhen., 38:3 (2004), 29–38; Funct. Anal. Appl., 38:3 (2004), 184–191
This publication is cited in the following 13 articles:
Dmytro Skorokhodov, “The Landau–Kolmogorov problem on a finite interval in the Taikov case”, Journal of Approximation Theory, 280 (2022), 105771
Babenko V., Babenko Yu., Kriachko N., Skorokhodov D., “On Hardy-Littlewood-Polya and Taikov Type Inequalities For Multiple Operators in Hilbert Spaces”, Anal. Math., 47:4 (2021), 709–745
O. Kozynenko, D. Skorokhodov, “Kolmogorov-Type Inequalities for the Norms of Fractional Derivatives of Functions Defined on the Positive Half Line”, Ukr Math J, 72:10 (2021), 1579
Osipenko K.Yu., “Recovery of Derivatives For Functions Defined on the Semiaxis”, J. Complex., 48 (2018), 111–118
S. V. Zelik, A. A. Ilyin, “Green's function asymptotics and sharp interpolation inequalities”, Russian Math. Surveys, 69:2 (2014), 209–260
V. Tikhomirov, A. Kochurov, “Kolmogorov-type inequalities on the whole line or half line and the Lagrange principle in the theory of extremum problems”, Eurasian Math. J., 2:3 (2011), 125–142
Oshime Y., Watanabe K., “The Best Constant of l-P Sobolev Inequality Corresponding to Dirichlet Boundary Value Problem II”, Tokyo J. Math., 34:1 (2011), 115–133
A. A. Lunev, L. L. Oridoroga, “Exact Constants in Generalized Inequalities for Intermediate Derivatives”, Math. Notes, 85:5 (2009), 703–711
Watanabe K., Kametaka Y., Nagai A., Yamagishi H., TakemuraK., “Symmetrization of functions and the best constant of 1-DIM $L^p$ Sobolev inequality”, J. Inequal. Appl., 2009, 874631, 12 pp.
Watanabe K., Kametaka Y., Nagai A., Takemura K., Yamagishi H., “The best constant of Sobolev inequality on a bounded interval”, J. Math. Anal. Appl., 340:1 (2008), 699–706
G. A. Kalyabin, “Some Problems for Sobolev Spaces on the Half-line”, Proc. Steklov Inst. Math., 255 (2006), 150–158
G. A. Kalyabin, “Effective Formulas for Constants in the Stechkin–Gabushin Problem”, Proc. Steklov Inst. Math., 248 (2005), 118–124
G. A. Kalyabin, “Extrapolations with the Least Norms in the Sobolev Spaces $W_2^n$ on the Half-Axis and the Whole Axis”, Proc. Steklov Inst. Math., 243 (2003), 220–226