Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2004, Volume 38, Issue 3, Pages 29–38
DOI: https://doi.org/10.4213/faa115
(Mi faa115)
 

This article is cited in 13 scientific papers (total in 13 papers)

Sharp Constants in Inequalities for Intermediate Derivatives (the Gabushin Case)

G. A. Kalyabinab

a Image Processing Systems Institute
b Samara Academy of Humanities
References:
Abstract: We solve Tikhomirov's problem on the explicit computation of sharp constants in the Kolmogorov type inequalities
|f(k)(0)|An,k(+0(|f(x)|2+|f(n)(x)|2)dx)1/2.
Specifically, we prove that
An,k=(sinπ(2k+1)2n)1/2ks=1cotπs2n
for all n{1,2,} and k{0,,n1}. We establish symmetry and regularity properties of the numbers An,k and study their asymptotic behavior as n for the cases k=O(n2/3) and k/nα(0,1).
Similar problems were previously studied by Gabushin and Taikov.
Keywords: extrapolation with minimal norm, Lagrange optimality principle, inversion of special matrices.
Received: 16.06.2003
English version:
Functional Analysis and Its Applications, 2004, Volume 38, Issue 3, Pages 184–191
DOI: https://doi.org/10.1023/B:FAIA.0000042803.72039.20
Bibliographic databases:
Document Type: Article
UDC: 517.518.26
Language: Russian
Citation: G. A. Kalyabin, “Sharp Constants in Inequalities for Intermediate Derivatives (the Gabushin Case)”, Funktsional. Anal. i Prilozhen., 38:3 (2004), 29–38; Funct. Anal. Appl., 38:3 (2004), 184–191
Citation in format AMSBIB
\Bibitem{Kal04}
\by G.~A.~Kalyabin
\paper Sharp Constants in Inequalities for Intermediate Derivatives (the Gabushin Case)
\jour Funktsional. Anal. i Prilozhen.
\yr 2004
\vol 38
\issue 3
\pages 29--38
\mathnet{http://mi.mathnet.ru/faa115}
\crossref{https://doi.org/10.4213/faa115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2095132}
\zmath{https://zbmath.org/?q=an:1079.41009}
\transl
\jour Funct. Anal. Appl.
\yr 2004
\vol 38
\issue 3
\pages 184--191
\crossref{https://doi.org/10.1023/B:FAIA.0000042803.72039.20}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224913700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-4644367883}
Linking options:
  • https://www.mathnet.ru/eng/faa115
  • https://doi.org/10.4213/faa115
  • https://www.mathnet.ru/eng/faa/v38/i3/p29
  • This publication is cited in the following 13 articles:
    1. Dmytro Skorokhodov, “The Landau–Kolmogorov problem on a finite interval in the Taikov case”, Journal of Approximation Theory, 280 (2022), 105771  crossref
    2. Babenko V., Babenko Yu., Kriachko N., Skorokhodov D., “On Hardy-Littlewood-Polya and Taikov Type Inequalities For Multiple Operators in Hilbert Spaces”, Anal. Math., 47:4 (2021), 709–745  crossref  mathscinet  isi
    3. O. Kozynenko, D. Skorokhodov, “Kolmogorov-Type Inequalities for the Norms of Fractional Derivatives of Functions Defined on the Positive Half Line”, Ukr Math J, 72:10 (2021), 1579  crossref
    4. Osipenko K.Yu., “Recovery of Derivatives For Functions Defined on the Semiaxis”, J. Complex., 48 (2018), 111–118  crossref  mathscinet  zmath  isi  scopus
    5. S. V. Zelik, A. A. Ilyin, “Green's function asymptotics and sharp interpolation inequalities”, Russian Math. Surveys, 69:2 (2014), 209–260  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. V. Tikhomirov, A. Kochurov, “Kolmogorov-type inequalities on the whole line or half line and the Lagrange principle in the theory of extremum problems”, Eurasian Math. J., 2:3 (2011), 125–142  mathnet  mathscinet  zmath
    7. Oshime Y., Watanabe K., “The Best Constant of l-P Sobolev Inequality Corresponding to Dirichlet Boundary Value Problem II”, Tokyo J. Math., 34:1 (2011), 115–133  crossref  mathscinet  zmath  isi  scopus
    8. A. A. Lunev, L. L. Oridoroga, “Exact Constants in Generalized Inequalities for Intermediate Derivatives”, Math. Notes, 85:5 (2009), 703–711  mathnet  crossref  crossref  mathscinet  zmath  isi
    9. Watanabe K., Kametaka Y., Nagai A., Yamagishi H., TakemuraK., “Symmetrization of functions and the best constant of 1-DIM $L^p$ Sobolev inequality”, J. Inequal. Appl., 2009, 874631, 12 pp.  crossref  mathscinet  zmath  isi  elib  scopus
    10. Watanabe K., Kametaka Y., Nagai A., Takemura K., Yamagishi H., “The best constant of Sobolev inequality on a bounded interval”, J. Math. Anal. Appl., 340:1 (2008), 699–706  crossref  mathscinet  zmath  isi  elib  scopus
    11. G. A. Kalyabin, “Some Problems for Sobolev Spaces on the Half-line”, Proc. Steklov Inst. Math., 255 (2006), 150–158  mathnet  crossref  mathscinet  elib
    12. G. A. Kalyabin, “Effective Formulas for Constants in the Stechkin–Gabushin Problem”, Proc. Steklov Inst. Math., 248 (2005), 118–124  mathnet  mathscinet  zmath
    13. G. A. Kalyabin, “Extrapolations with the Least Norms in the Sobolev Spaces $W_2^n$ on the Half-Axis and the Whole Axis”, Proc. Steklov Inst. Math., 243 (2003), 220–226  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:662
    Full-text PDF :235
    References:114
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025