|
New 2-microlocal Besov and Triebel–Lizorkin spaces via the Litllewood–Paley decomposition
K. Saka Department of Mathematics, Akita University, 010-8502 Akita, Japan
Abstract:
In this paper we introduce and investigate new 2-microlocal Besov and Triebel–Lizorkin spaces via the Littlewood–Paley decomposition. We establish characterizations of these function spaces by the φ-transform, the atomic and molecular decomposition and the wavelet decomposition. As applications we prove boundedness of the the Calderón–Zygmund operators and the pseudo-differential operators on the function spaces. Moreover, we give characterizations via oscillations and differences.
Keywords and phrases:
wavelet, Besov space, Triebel–Lizorkin space, pseudo-differential operator, Calderón–Zygmund operator, atomic and molecular decomposition, 2-microlocal space, φ-transform.
Received: 21.05.2021 Accepted: 16.03.2023
Citation:
K. Saka, “New 2-microlocal Besov and Triebel–Lizorkin spaces via the Litllewood–Paley decomposition”, Eurasian Math. J., 14:3 (2023), 75–111
Linking options:
https://www.mathnet.ru/eng/emj478 https://www.mathnet.ru/eng/emj/v14/i3/p75
|
Statistics & downloads: |
Abstract page: | 86 | Full-text PDF : | 34 | References: | 22 |
|