Abstract:
We give the well-posedness conditions in L2(−∞,+∞) for the following differential
equation
−y‴+p(x)y′+q(x)y=f(x),
where p and q are continuously differentiable and continuous functions, respectively, and f∈L2(R). Moreover, we prove for the solution y of this equation the following maximal regularity
estimate:
||y‴||2+||py′||2+||qy||2⩽C||f||2
(here ||⋅||2 is the norm in L2(−∞,+∞)). We assume that the intermediate coefficient p is fast
oscillating and not controlled by the coefficient q. The sufficient conditions obtained by us are
close to necessary ones. We give similar results for the fourth-order differential equation with
singular intermediate coefficients.
Citation:
K. N. Ospanov, Zh. B. Yeskabylova, D. R. Beisenova, “Maximal regularity estimates for higher order differential equations with fluctuating coefficients”, Eurasian Math. J., 10:2 (2019), 65–74
\Bibitem{OspYesBei19}
\by K.~N.~Ospanov, Zh.~B.~Yeskabylova, D.~R.~Beisenova
\paper Maximal regularity estimates for higher order differential equations with fluctuating coefficients
\jour Eurasian Math. J.
\yr 2019
\vol 10
\issue 2
\pages 65--74
\mathnet{http://mi.mathnet.ru/emj330}
\crossref{https://doi.org/10.32523/2077-9879-2019-10-2-65-74}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000475748400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071964607}
Linking options:
https://www.mathnet.ru/eng/emj330
https://www.mathnet.ru/eng/emj/v10/i2/p65
This publication is cited in the following 4 articles:
N. T. Orumbayeva, A. T. Assanova, A. B. Keldibekova, “On an algorithm of finding an approximate solution of a periodic problem for a third-order differential equation”, Eurasian Math. J., 13:1 (2022), 69–85
Myrzagali Ospanov, Kordan Ospanov, “Maximal Regularity Estimates and the Solvability of Nonlinear Differential Equations”, Mathematics, 10:10 (2022), 1717
K. N. Ospanov, “Correctness conditions for high-order differential equations with unbounded coefficients”, Bound. Value Probl., 2021:1 (2021), 47
Zh. B. Yeskabylova, K. N. Ospanov, T. N. Bekjan, “The solvability results for the third-order singular non-linear differential equation”, Eurasian Math. J., 10:4 (2019), 85–91