Loading [MathJax]/jax/output/CommonHTML/jax.js
Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2018, Volume 9, Number 2, Pages 54–67 (Mi emj297)  

This article is cited in 4 scientific papers (total in 4 papers)

On fundamental solutions of a class of weak hyperbolic operators

V. N. Margaryanab, H. G. Ghazaryanab

a Institute of Mathematics the National Academy of Sciences of Armenia, 0051 Yerevan, Armenia
b Department of Mathematics and Mathematical Modeling, Russian-Armenian University, 123 Ovsep Emin St, 0051 Yerevan, Armenia
Full-text PDF (438 kB) Citations (4)
References:
Abstract: We consider a certain class of polyhedrons REn, multi-anisotropic Jevre spaces GR(En), their subspaces GR0(En), consisting of all functions fGR(En) with compact support, and their duals (GR0(En)). We introduce the notion of a linear differential operator P(D), hR-hyperbolic with respect to a vector NEn, where hR is a weight function generated by the polyhedron R. The existence is shown of a fundamental solution E of the operator P(D) belonging to (GR0(En)) with suppE¯ΩN, where ΩN:={xEn,(x,N)>0}. It is also shown that for any right-hand side fGR(En) with the support in a cone contained in ¯ΩN and with the vertex at the origin of En, the equation P(D)u=f has a solution belonging to GR(En).
Keywords and phrases: hyperbolic with weight operator (polynomial), multianisotropic Jevre space, Newton polyhedron, fundamental solution.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation
Ministry of Education and Science of the Republic of Armenia SCS N: 15T - 1A 197
The research was partially supported by the State Committee of Science (Ministry of Education and Science of the Republic of Armenia), project SCS N: 15T - 1A 197 and the Thematic Funding of Russian-Armenian University (Ministry of Education and Science of the Russian Federation).
Received: 13.03.2017
Document Type: Article
MSC: 12E10
Language: English
Citation: V. N. Margaryan, H. G. Ghazaryan, “On fundamental solutions of a class of weak hyperbolic operators”, Eurasian Math. J., 9:2 (2018), 54–67
Citation in format AMSBIB
\Bibitem{MarGha18}
\by V.~N.~Margaryan, H.~G.~Ghazaryan
\paper On fundamental solutions of a class of weak hyperbolic operators
\jour Eurasian Math. J.
\yr 2018
\vol 9
\issue 2
\pages 54--67
\mathnet{http://mi.mathnet.ru/emj297}
Linking options:
  • https://www.mathnet.ru/eng/emj297
  • https://www.mathnet.ru/eng/emj/v9/i2/p54
  • This publication is cited in the following 4 articles:
    1. H. G. Ghazaryan, “Comparison of powers of differential polynomials”, Eurasian Math. J., 14:4 (2023), 23–46  mathnet  crossref
    2. V. N. Margaryan, H. G. Ghazaryan, “On certain class of weighted hyperbolic polynomials”, J. Contemp. Math. Anal.-Armen. Aca., 56:6 (2021), 319–331  crossref  mathscinet  zmath  isi  scopus
    3. H. G. Ghazaryan, V. N. Margaryan, “Hyperbolicity with weight of polynomials in terms of comparing their power”, Eurasian Math. J., 11:2 (2020), 40–51  mathnet  crossref
    4. H. G. Ghazaryan, V. N. Margaryan, “Addition of lower order terms to weakly hyperbolic operators with preservation of their type of hyperbolicit”, Lobachevskii J. Math., 40:8, SI (2019), 1069–1078  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Statistics & downloads:
    Abstract page:327
    Full-text PDF :108
    References:55
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025