Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2010, Volume 1, Number 3, Pages 58–96 (Mi emj29)  

This article is cited in 16 scientific papers (total in 16 papers)

Coercive estimates and integral representation formulas on Carnot groups

D. V. Isangulovaa, S. K. Vodopyanovb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Mechanics and Mathematics Department, Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: For general Carnot groups, we obtain coercive estimates for homogeneous differential operators with constant coefficients, kernels of which have finite dimension. We develop new Sobolev-type integral representations of differentiable functions which are a crucial tool for deriving coercive estimates. Moreover we prove some auxiliary results having independent interest, in particular, Sobolev type embedding and compactness theorems for John domains.
Keywords and phrases: coercive estimate, integral representation, Sobolev space, Carnot group.
Received: 15.06.2010
Bibliographic databases:
Document Type: Article
MSC: 43A80, 46E35, 58J99
Language: English
Citation: D. V. Isangulova, S. K. Vodopyanov, “Coercive estimates and integral representation formulas on Carnot groups”, Eurasian Math. J., 1:3 (2010), 58–96
Citation in format AMSBIB
\Bibitem{IsaVod10}
\by D.~V.~Isangulova, S.~K.~Vodopyanov
\paper Coercive estimates and integral representation formulas on Carnot groups
\jour Eurasian Math. J.
\yr 2010
\vol 1
\issue 3
\pages 58--96
\mathnet{http://mi.mathnet.ru/emj29}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2904767}
\zmath{https://zbmath.org/?q=an:1219.43007}
Linking options:
  • https://www.mathnet.ru/eng/emj29
  • https://www.mathnet.ru/eng/emj/v1/i3/p58
  • This publication is cited in the following 16 articles:
    1. D. V. Isangulova, “Topologicheskie svoistva otobrazhenii s konechnym iskazheniem na gruppakh Karno”, Sib. matem. zhurn., 65:1 (2024), 57–73  mathnet  crossref
    2. S. K. Vodopyanov, S. V. Pavlov, “Funktsionalnye svoistva predelov sobolevskikh gomeomorfizmov s integriruemym iskazheniem”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, SMFN, 70, no. 2, Rossiiskii universitet druzhby narodov, M., 2024, 215–236  mathnet  crossref
    3. S. K. Vodopyanov, S. V. Pavlov, “O granichnykh znacheniyakh v geometricheskoi teorii funktsii v oblastyakh s podvizhnymi granitsami”, Sib. matem. zhurn., 65:3 (2024), 489–516  mathnet  crossref
    4. Izv. Math., 87:4 (2023), 683–725  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. Wang H., Niu P., “Weighted Higher Order Exponential Type Inequalities in Metric Spaces and Applications”, Georgian Math. J., 28:4 (2021), 637–650  crossref  mathscinet  zmath  isi  scopus
    6. S. K. Vodopyanov, “Admissible changes of variables for Sobolev functions on (sub-)Riemannian manifolds”, Sb. Math., 210:1 (2019), 59–104  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. S. K. Vodopyanov, “Isomorphisms of Sobolev spaces on Riemannian manifolds and quasiconformal mappings”, Siberian Math. J., 60:5 (2019), 774–804  mathnet  crossref  crossref  isi  elib
    8. D. V. Isangulova, “Analogs of Korn's inequality on Heisenberg groups”, Siberian Math. J., 60:5 (2019), 846–860  mathnet  crossref  crossref  isi  elib
    9. Isangulova D.V., “Analogues of Korn'S Inequality on Heisenberg Groups”, Dokl. Math., 99:2 (2019), 181–184  crossref  zmath  isi  scopus
    10. S. K. Vodop'yanov, N. A. Evseev, “Isomorphisms of Sobolev spaces on Carnot groups and quasiconformal mappings”, Siberian Math. J., 56:5 (2015), 789–821  mathnet  crossref  crossref  isi  elib  elib
    11. S. G. Basalaev, “The Poincaré inequality for C1,α-smooth vector fields”, Siberian Math. J., 55:2 (2014), 215–229  mathnet  crossref  mathscinet  isi
    12. S. K. Vodop'yanov, N. A. Evseev, “Isomorphisms of Sobolev spaces on Carnot groups and quasi-isometric mappings”, Siberian Math. J., 55:5 (2014), 817–848  mathnet  crossref  mathscinet  isi
    13. D. V. Isangulova, “The Liouville theorem for conformal mappings on Carnot groups with Goursat–Darboux distribution”, Siberian Math. J., 55:5 (2014), 893–903  mathnet  crossref  mathscinet  isi
    14. Isangulova D.V., Vodopyanov S.K., “Sharp Geometric Rigidity of Isometries on Heisenberg Groups”, Math. Ann., 355:4 (2013), 1301–1329  crossref  mathscinet  zmath  isi  elib
    15. Isangulova D.V., “Liouville-Type Theorem on Conformal Mappings Under Minimal Smoothness Assumptions For the Example of a Step 3 Carnot Group”, Dokl. Math., 88:2 (2013), 562–565  crossref  mathscinet  zmath  isi  scopus
    16. Basalaev S.G., “Poincare Inequality For C-1-Smooth Vector Fields”, Dokl. Math., 88:1 (2013), 460–464  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Statistics & downloads:
    Abstract page:591
    Full-text PDF :171
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025