Processing math: 100%
Dal'nevostochnyi Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dal'nevost. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Dal'nevostochnyi Matematicheskii Zhurnal, 2022, Volume 22, Number 1, Pages 91–99
DOI: https://doi.org/10.47910/FEMJ202209
(Mi dvmg472)
 

Polynomial Somos sequences II

M. A. Romanov

Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
References:
Abstract: It was proved in [1] that for k=4,5,6,7 the elements of the Somos-k sequence defined by the recurrence
Sk(n+k)Sk(n)=1ik/2αix0xk1Sk(n+ki)Sk(n+i)
and initial values Sk(j)=xj (j=0,,k1) are polynomials in the variables x0,,xk1. The unit powers of the variables xj in the factors \linebreak αix0xk1 can be reduced. In this paper, we find the smallest values of these powers, at which the polynomiality of the above sequence is preserved.
Key words: Somos sequences, ultradiscrete sequences.
Funding agency Grant number
Russian Science Foundation 19-11-00065
The study was carried out at the expense of a grant from the Russian Science Foundation No. 19-11-00065
Received: 30.05.2022
Bibliographic databases:
Document Type: Article
UDC: 517.583, 512.742.72
MSC: 33E05
Language: Russian
Citation: M. A. Romanov, “Polynomial Somos sequences II”, Dal'nevost. Mat. Zh., 22:1 (2022), 91–99
Citation in format AMSBIB
\Bibitem{Rom22}
\by M.~A.~Romanov
\paper Polynomial Somos sequences II
\jour Dal'nevost. Mat. Zh.
\yr 2022
\vol 22
\issue 1
\pages 91--99
\mathnet{http://mi.mathnet.ru/dvmg472}
\crossref{https://doi.org/10.47910/FEMJ202209}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4448032}
Linking options:
  • https://www.mathnet.ru/eng/dvmg472
  • https://www.mathnet.ru/eng/dvmg/v22/i1/p91
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дальневосточный математический журнал
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :42
    References:31
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025