Loading [MathJax]/jax/output/SVG/config.js
Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2000, Volume 12, Issue 3, Pages 37–48
DOI: https://doi.org/10.4213/dm339
(Mi dm339)
 

This article is cited in 9 scientific papers (total in 9 papers)

Analysis of the sensitivity of efficient solutions of a vector problem of minimizing linear forms on a set of permutations

V. A. Emelichev, V. G. Pokhil'ko
References:
Abstract: We consider a multicriteria formulation of the well-known combinatorial problem to minimise a linear form over an arbitrary set of permutations of the symmetric group. We give bounds (in the Chebyshev metric) for the coefficients of the linear forms preserving the corresponding efficiency of an arbitrary solution that is Pareto-, Slater-, or Smale-optimal. We present some conditions guaranteeing that a permutation possessing the efficiency property is locally stable. The class of quasi-stable problems is described.
Received: 24.06.2000
Bibliographic databases:
UDC: 519.10
Language: Russian
Citation: V. A. Emelichev, V. G. Pokhil'ko, “Analysis of the sensitivity of efficient solutions of a vector problem of minimizing linear forms on a set of permutations”, Diskr. Mat., 12:3 (2000), 37–48; Discrete Math. Appl., 10:4 (2000), 367–378
Citation in format AMSBIB
\Bibitem{EmePok00}
\by V.~A.~Emelichev, V.~G.~Pokhil'ko
\paper Analysis of the sensitivity of efficient solutions of a vector problem of minimizing linear forms on a set of permutations
\jour Diskr. Mat.
\yr 2000
\vol 12
\issue 3
\pages 37--48
\mathnet{http://mi.mathnet.ru/dm339}
\crossref{https://doi.org/10.4213/dm339}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1810952}
\zmath{https://zbmath.org/?q=an:0981.90051}
\transl
\jour Discrete Math. Appl.
\yr 2000
\vol 10
\issue 4
\pages 367--378
Linking options:
  • https://www.mathnet.ru/eng/dm339
  • https://doi.org/10.4213/dm339
  • https://www.mathnet.ru/eng/dm/v12/i3/p37
  • This publication is cited in the following 9 articles:
    1. V. A. Emelichev, V. V. Korotkov, “On the stability radius of an efficient solution of a multicriteria portfolio optimisation problem with the Savage criteria”, Discrete Math. Appl., 21:5-6 (2011), 509–515  mathnet  crossref  crossref  mathscinet  elib
    2. Emelichev V., Kuz'Min K., Nikulin Y., “Stability analysis of the Pareto optimal solutions for some vector boolean optimization problem”, Optimization, 54:6 (2005), 545–561  crossref  mathscinet  zmath  isi  elib  scopus
    3. V. A. Emelichev, K. G. Kuzmin, “Stability Radius of a Lexicographic Optimum of a Vector Problem of Boolean Programming”, Cybern Syst Anal, 41:2 (2005), 215  crossref
    4. V. A. Emelichev, K. G. Kuz'min, “Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric $l_1$”, Discrete Math. Appl., 14:5 (2004), 521–526  mathnet  crossref  crossref  mathscinet  zmath
    5. V. A. Emelichev, K. G. Kuz'min, A. M. Leonovich, “On a type of stability for a vector combinatorial problem with partial criteria of the form $\Sigma$-MINMAX and $\Sigma$-MINMIN”, Russian Math. (Iz. VUZ), 48:12 (2004), 15–25  mathnet  mathscinet
    6. V. A. Emelichev, K. G. Kuz'min, A. M. Leonovich, “Stability in the combinatorial vector optimization problems”, Autom. Remote Control, 65:2 (2004), 227–240  mathnet  crossref  mathscinet  zmath  isi
    7. S. E. Bukhtoyarov, V. A. Emelichev, “Parametrizatsiya printsipa optimalnosti (“ot Pareto do Sleitera”) i ustoichivost mnogokriterialnykh traektornykh zadach”, Diskretn. analiz i issled. oper., ser. 2, ser. 2, 10:2 (2003), 3–18  mathnet  mathscinet
    8. Emelichev V.A., Girlich E., Nikulin Y.V., Podkopaev D.P., “Stability and regularization of vector problems of integer linear programming”, Optimization, 51:4 (2002), 645–676  crossref  mathscinet  zmath  isi  scopus
    9. V. A. Emelichev, Yu. v. Stepanishina, “Multicriteria combinatorial linear problems: parametrisation of the optimality principle and the stability of the effective solutions”, Discrete Math. Appl., 11:5 (2001), 435–444  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:806
    Full-text PDF :278
    References:75
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025