Loading [MathJax]/jax/output/SVG/config.js
Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2024, Volume 36, Issue 3, Pages 50–79
DOI: https://doi.org/10.4213/dm1833
(Mi dm1833)
 

On the prospective minimum of the random walk conditioned to stay nonnegative

V. A. Vatutin, E. E. Dyakonova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: Let
\begin{equation*} S_{0}=0,\quad S_{n}=X_{1}+\ldots+X_{n},\ n\geq 1, \end{equation*}
be a random walk whose increments belong without centering to the domain of attraction of a stable law with scaling constants $a_{n}$ that provide convergence as $n\rightarrow \infty $ of the distributions of the sequence $ \left\{ S_{n}/a_{n},n=1,2,\ldots\right\} $ to this stable law. Let $ L_{r,n}=\min_{r\leq m\leq n}S_{m}$ be the minimum of the random walk on the interval $[r,n]$. It is shown that
\begin{equation*} \lim_{r,k,n\rightarrow \infty }\mathbf{P}\left( L_{r,n}\leq ya_{k}|S_{n}\leq ta_{k},L_{0,n}\geq 0\right) ,\, t\in \left( 0,\infty \right), \end{equation*}
can have five different expressions, the forms of which depend on the relationships between the parameters $r,k$ and $n$.
Keywords: random walks, stable distributions, conditional limit theorems.
Funding agency Grant number
Russian Science Foundation 24-11-00037
This work was supported by the Russian Science Foundation under grant no. 24-11-00037, https://rscf.ru/en/project/24-11-00037/.
Received: 20.06.2024
English version:
Discrete Mathematics and Applications, 2024, Volume 34, Issue 6, Pages 337–362
DOI: https://doi.org/10.1515/dma-2024-0030
Bibliographic databases:
Document Type: Article
UDC: 519.217.31
Language: Russian
Citation: V. A. Vatutin, E. E. Dyakonova, “On the prospective minimum of the random walk conditioned to stay nonnegative”, Diskr. Mat., 36:3 (2024), 50–79; Discrete Math. Appl., 34:6 (2024), 337–362
Citation in format AMSBIB
\Bibitem{VatDya24}
\by V.~A.~Vatutin, E.~E.~Dyakonova
\paper On the prospective minimum of the random walk conditioned to stay nonnegative
\jour Diskr. Mat.
\yr 2024
\vol 36
\issue 3
\pages 50--79
\mathnet{http://mi.mathnet.ru/dm1833}
\crossref{https://doi.org/10.4213/dm1833}
\transl
\jour Discrete Math. Appl.
\yr 2024
\vol 34
\issue 6
\pages 337--362
\crossref{https://doi.org/10.1515/dma-2024-0030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001374544700002}
Linking options:
  • https://www.mathnet.ru/eng/dm1833
  • https://doi.org/10.4213/dm1833
  • https://www.mathnet.ru/eng/dm/v36/i3/p50
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :2
    References:27
    First page:17
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025