Abstract:
We show that triangular families of Boolean functions comprise an exponentially small fraction of proper families of a given order. We prove that if F is a proper family of Boolean functions, then the number of solutions of an equation F(x)=A is even. Finally, we describe a new class of proper families of Boolean functions.
Keywords:
proper family of Boolean functions, triangular family.
This publication is cited in the following 3 articles:
A. V. Galatenko, V. A. Nosov, A. E. Pankratev, K. D. Tsaregorodtsev, “O porozhdenii n-kvazigrupp s pomoschyu pravilnykh semeistv funktsii”, Diskret. matem., 35:1 (2023), 35–53
A. V. Galatenko, V. A. Nosov, A. E. Pankratiev, K. D. Tsaregorodtsev, “Proper families of functions and their applications”, Matem. vopr. kriptogr., 14:2 (2023), 43–58
A. V. Galatenko, A. E. Pankratiev, V. M. Staroverov, “Generation of proper families of functions”, Lobachevskii J. Math., 43:3 (2022), 571–581