Abstract:
The probabilistic characteristics of the graph of $k$-fold iteration of uniform random mapping are studied. Formulas for the distribution of the length of the aperiodicity segment of an arbitrary vertex with some restrictions are calculated. We obtain exact expressions for the probabilities that two arbitrary vertices belong to the same connected component, that an arbitrary vertex belongs to the preimage set of another vertex and that there exists a collision in the considered graph.} \keywords{ uniform random mapping, iteration of random mapping, aperiodicity segment, graph of a mapping, connected component, preimage, collision
Keywords:
uniform random mapping, iteration of random mapping, aperiodicity segment, graph of a mapping, connected component, preimage, collision.
Citation:
V. O. Mironkin, “Collisions and incidence of vertices and components in the graph of $k$-fold iteration of the uniform random mapping”, Diskr. Mat., 31:4 (2019), 38–52; Discrete Math. Appl., 31:4 (2021), 259–269
\Bibitem{Mir19}
\by V.~O.~Mironkin
\paper Collisions and incidence of vertices and components in the graph of $k$-fold iteration of the uniform random mapping
\jour Diskr. Mat.
\yr 2019
\vol 31
\issue 4
\pages 38--52
\mathnet{http://mi.mathnet.ru/dm1596}
\crossref{https://doi.org/10.4213/dm1596}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4043282}
\elib{https://elibrary.ru/item.asp?id=47042170}
\transl
\jour Discrete Math. Appl.
\yr 2021
\vol 31
\issue 4
\pages 259--269
\crossref{https://doi.org/10.1515/dma-2021-0023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000691761800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85114302515}
Linking options:
https://www.mathnet.ru/eng/dm1596
https://doi.org/10.4213/dm1596
https://www.mathnet.ru/eng/dm/v31/i4/p38
This publication is cited in the following 2 articles:
A. M. Zubkov, P. V. Khalipov, “Probability that given vertices belong to the same connected component of random equiprobable mapping”, Discrete Math. Appl., 34:4 (2024), 245–250
V. O. Mironkin, “Sloi v grafe kompozitsii nezavisimykh ravnoveroyatnykh sluchainykh otobrazhenii”, Matem. vopr. kriptogr., 11:1 (2020), 101–114