Abstract:
The limited deficit method is described, which allows constructing new orthomorphisms (almost orthomorphisms) of groups with the use of those already known. A class of transformations is described under which the set of all orthomorphisms (almost orthomorphisms) remains invariant. It is conjectured that the set of all orthomorphisms (almost orthomorphisms) is generated by transformations implemented by the limited deficit method. This conjecture is verified for all Abelian groups of order at most 12. The spectral-linear method and the spectral-differential method of design of permutations over the additive group of the field F2m (m=4,…,8) are used to construct orthomorphisms with sufficiently high values of the most important cryptographic parameters.
Keywords:
orthomorphism, almost orthomorphism, permutation deficit, orthogonal Latin squares, permutation, s-box, spectral-linear method, spectral-differential method.
Citation:
A. V. Menyachikhin, “The limited deficit method and the problem of constructing orthomorphisms and almost orthomorphisms of Abelian groups”, Diskr. Mat., 31:3 (2019), 58–77; Discrete Math. Appl., 31:5 (2021), 327–343
\Bibitem{Men19}
\by A.~V.~Menyachikhin
\paper The limited deficit method and the problem of constructing orthomorphisms and almost orthomorphisms of Abelian groups
\jour Diskr. Mat.
\yr 2019
\vol 31
\issue 3
\pages 58--77
\mathnet{http://mi.mathnet.ru/dm1576}
\crossref{https://doi.org/10.4213/dm1576}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4010391}
\transl
\jour Discrete Math. Appl.
\yr 2021
\vol 31
\issue 5
\pages 327--343
\crossref{https://doi.org/10.1515/dma-2021-0030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000708435200004}
Linking options:
https://www.mathnet.ru/eng/dm1576
https://doi.org/10.4213/dm1576
https://www.mathnet.ru/eng/dm/v31/i3/p58
This publication is cited in the following 4 articles:
S. V. Spiridonov, “Ortomorfizmy grupp s minimalno vozmozhnymi poparnymi rasstoyaniyami”, PDM, 2024, no. 66, 45–59
O. A. Kozlitin, M. A. Suleimanov, “Protokoly distantsionnogo golosovaniya. I”, Matem. vopr. kriptogr., 14:4 (2023), 89–110
A. Yu. Zubov, “Kriptosistema blochnogo gammirovaniya s autentifikatsiei”, Matem. vopr. kriptogr., 13:4 (2022), 5–35
R. A. de la Cruz Jiménez, “Postroenie 8-bitovykh podstanovok, 8-bitovykh involyutsii i 8-bitovykh ortomorfizmov s pochti optimalnymi kriptograficheskimi parametrami”, Matem. vopr. kriptogr., 12:3 (2021), 89–124