Abstract:
We consider functions of p2p2-valued logic (pp is prime) that may be implemented by polynomials over the ring Zp2, and describe all closed classes that contain linear functions. It turns out that the set of these classes is countable. We also construct the lattice of such classes with respect to inclusion.
Keywords:k-valued logic, closed class, clone, polynomials over a ring of residues, lattice of closed classes.
This publication is cited in the following 4 articles:
S. N. Selezneva, “Opisanie zamknutogo klassa polinomialnykh funktsii po modulyu stepeni prostogo chisla posredstvom otnosheniya”, Diskret. matem., 35:4 (2023), 115–125
D. G. Meschaninov, “Peresecheniya klassov k-znachnykh funktsii, sokhranyayuschikh sravneniya i raznosti”, Material konferentsii: “XIV mezhdunarodnyi nauchnyi seminar "Diskretnaya matematika i ee prilozheniya” imeni akademika O.B. Lupanova (20-25 iyunya 2022 g., Moskva), 2022, 133
D. G. Meshchaninov, “Some families of closed classes in Pk defined by additive formulas”, Discrete Math. Appl., 32:2 (2022), 115–128
D. G. Meshchaninov, “A Family of Closed Classes in k-Valued Logic”, Moscow Univ. Comput. Math. Cybern., 43:1 (2019), 25