Abstract:
Let NN be a set of NN elements and (F1,G1),(F2,G2),…(F1,G1),(F2,G2),… be a sequence of independent pairs of random dependent mappings N→NN→N such that FkFk and GkGk are random equiprobable mappings and P{Fk(x)=Gk(x)}=αP{Fk(x)=Gk(x)}=α for all x∈Nx∈N and k=1,2,…k=1,2,… For a subset S0⊂N,|S0|=nS0⊂N,|S0|=n, we consider a sequences of its images Sk=Fk(…F2(F1(S0))…)Sk=Fk(…F2(F1(S0))…), Tk=Gk(…G2(G1(S0))…)Tk=Gk(…G2(G1(S0))…), k=1,2…k=1,2…, and a sequences of their unions Sk∪TkSk∪Tk and intersections Sk∩TkSk∩Tk, k=1,2…k=1,2… We obtain two-sided inequalities for M|Sk∪Tk|M|Sk∪Tk| and M|Sk∩Tk|M|Sk∩Tk| such that upper and lower bounds are asymptotically equivalent if N,n,k→∞N,n,k→∞, nk=o(N)nk=o(N) and α=O(1N)α=O(1N).
Keywords:
random mappings of finite sets, joint distributions, iterations of random mappings, Markov chain.
Citation:
A. A. Serov, “Images of a finite set under iterations of two random dependent mappings”, Diskr. Mat., 27:4 (2015), 133–140; Discrete Math. Appl., 26:3 (2016), 175–181
\Bibitem{Ser15}
\by A.~A.~Serov
\paper Images of a finite set under iterations of two random dependent mappings
\jour Diskr. Mat.
\yr 2015
\vol 27
\issue 4
\pages 133--140
\mathnet{http://mi.mathnet.ru/dm1352}
\crossref{https://doi.org/10.4213/dm1352}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3497377}
\zmath{https://zbmath.org/?q=an:1347.60004}
\elib{https://elibrary.ru/item.asp?id=24849945}
\transl
\jour Discrete Math. Appl.
\yr 2016
\vol 26
\issue 3
\pages 175--181
\crossref{https://doi.org/10.1515/dma-2016-0015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000384440200005}
\elib{https://elibrary.ru/item.asp?id=27108287}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979911523}
Linking options:
https://www.mathnet.ru/eng/dm1352
https://doi.org/10.4213/dm1352
https://www.mathnet.ru/eng/dm/v27/i4/p133
This publication is cited in the following 6 articles:
V. O. Mironkin, “Sloi v grafe kompozitsii nezavisimykh ravnoveroyatnykh sluchainykh otobrazhenii”, Matem. vopr. kriptogr., 11:1 (2020), 101–114
V. O. Mironkin, “Ob obrazakh i proobrazakh v grafe kompozitsii nezavisimykh ravnoveroyatnykh sluchainykh otobrazhenii”, PDM, 2020, no. 49, 5–17
V. O. Mironkin, “Raspredelenie dliny otrezka aperiodichnosti v grafe kompozitsii nezavisimykh ravnoveroyatnykh sluchainykh otobrazhenii”, Matem. vopr. kriptogr., 10:3 (2019), 89–99
A. M. Zubkov, A. A. Serov, “Estimates of the mean size of the subset image under composition of random mappings”, Discrete Math. Appl., 28:5 (2018), 331–338
A. M. Zubkov, A. A. Serov, “Limit theorem for the size of an image of subset under compositions of random mappings”, Discrete Math. Appl., 28:2 (2018), 131–138
A. M. Zubkov, V. O. Mironkin, “Raspredelenie dliny otrezka aperiodichnosti v grafe kk-kratnoi iteratsii sluchainogo ravnoveroyatnogo otobrazheniya”, Matem. vopr. kriptogr., 8:4 (2017), 63–74