Loading [MathJax]/jax/output/CommonHTML/jax.js
Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2005, Volume 17, Issue 4, Pages 59–71
DOI: https://doi.org/10.4213/dm129
(Mi dm129)
 

The law of large numbers for permanents of random matrices

A. N. Timashev
References:
Abstract: We consider the class of random matrices C=(cij), i,j=1,,N, whose elements are independent random variables distributed by the same law as a certain random variable ξ such that Eξ2>0. As usual, perC stands for the permanent of the matrix C. In the triangular array series where ξ=ξN, EξN0, N=1,2,, DξN=o((EξN)2) as N, we prove that the sequence of random variables perC/(N!(EξN)N) converges in probability to one as N. A similar result is shown to be true in a more general case where the rows of the matrix C are independent N-dimensional random vectors which have the same distribution coinciding with the distribution of a random vector μ whose components are identically distributed but are, generally speaking, dependent. We give sufficient conditions for the law of large numbers to be true for the sequence perC/EperC in the cases where the vector μ coincides with the vector of frequencies of outcomes of the equiprobable polynomial scheme with N outcomes and n trials and also where μ is a random equiprobable solution of the equation k1++kN=n in non-negative integers k1,,kN.
Received: 16.10.2003
English version:
Discrete Mathematics and Applications, 2005, Volume 15, Issue 5, Pages 513–526
DOI: https://doi.org/10.1515/156939205776368922
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: A. N. Timashev, “The law of large numbers for permanents of random matrices”, Diskr. Mat., 17:4 (2005), 59–71; Discrete Math. Appl., 15:5 (2005), 513–526
Citation in format AMSBIB
\Bibitem{Tim05}
\by A.~N.~Timashev
\paper The law of large numbers for permanents of random matrices
\jour Diskr. Mat.
\yr 2005
\vol 17
\issue 4
\pages 59--71
\mathnet{http://mi.mathnet.ru/dm129}
\crossref{https://doi.org/10.4213/dm129}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2240541}
\zmath{https://zbmath.org/?q=an:05062017}
\elib{https://elibrary.ru/item.asp?id=9154202}
\transl
\jour Discrete Math. Appl.
\yr 2005
\vol 15
\issue 5
\pages 513--526
\crossref{https://doi.org/10.1515/156939205776368922}
Linking options:
  • https://www.mathnet.ru/eng/dm129
  • https://doi.org/10.4213/dm129
  • https://www.mathnet.ru/eng/dm/v17/i4/p59
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:467
    Full-text PDF :229
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025