Abstract:
In order to simulate complex telecommunication networks, in particular, the Internet, random graphs are frequently used which contain N vertices whose degrees are independent random variables distributed by the law
P{η⩾k}=k−τ,
where η is the vertex degree, τ>0, k=1,2,…, and the graphs with identical degrees of all vertices are equiprobable. In this paper we consider the set of these graphs under the condition that the sum of degrees is equal to n. We show that the generalised scheme of allocating particles into cells can be used to investigate the asymptotic behaviour of these graphs. For N,n→∞ in such a way that 1<n/N<ζ(τ), where ζ(τ) is the value of the Riemann zeta function at the point τ, we obtain limit distributions of the maximum degree and the number of vertices of a given degree.
Citation:
Yu. L. Pavlov, I. A. Cheplyukova, “Random graphs of Internet type and the generalised allocation scheme”, Diskr. Mat., 20:3 (2008), 3–18; Discrete Math. Appl., 18:5 (2008), 447–463
\Bibitem{PavChe08}
\by Yu.~L.~Pavlov, I.~A.~Cheplyukova
\paper Random graphs of Internet type and the generalised allocation scheme
\jour Diskr. Mat.
\yr 2008
\vol 20
\issue 3
\pages 3--18
\mathnet{http://mi.mathnet.ru/dm1008}
\crossref{https://doi.org/10.4213/dm1008}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2467449}
\zmath{https://zbmath.org/?q=an:1171.05419}
\elib{https://elibrary.ru/item.asp?id=20730248}
\transl
\jour Discrete Math. Appl.
\yr 2008
\vol 18
\issue 5
\pages 447--463
\crossref{https://doi.org/10.1515/DMA.2008.033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57649195242}
Linking options:
https://www.mathnet.ru/eng/dm1008
https://doi.org/10.4213/dm1008
https://www.mathnet.ru/eng/dm/v20/i3/p3
This publication is cited in the following 17 articles:
I. A. Cheplyukova, “Ob odnoi kharakteristike uslovnogo raspredeleniya konfiguratsionnogo grafa”, Diskret. matem., 35:4 (2023), 132–145
Yu Miao, Qian Du, Zhen Wang, “Some Limit Theorems for the Cell Load in the Generalized Allocation Scheme”, Lith Math J, 62:3 (2022), 372
Yu. L. Pavlov, I. A. Cheplyukova, “Limit distributions of the number of vertices of a given degree in a configuration graph with bounded number of edges”, Theory Probab. Appl., 66:3 (2021), 376–390
Yu. L. Pavlov, “Svyaznost konfiguratsionnykh grafov v modelyakh slozhnykh setei”, Inform. i ee primen., 15:1 (2021), 18–22
E. G. Grigoreva, V. A. Klyachin, “Issledovanie statisticheskikh kharakteristik teksta na osnove grafovoi modeli lingvisticheskogo korpusa”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 20:1 (2020), 116–126
Yu. L. Pavlov, “On the connectivity of configuration graphs”, Discrete Math. Appl., 31:1 (2021), 43–49
Yu. L. Pavlov, “Conditional configuration graphs with discrete power-law distribution of vertex degrees”, Sb. Math., 209:2 (2018), 258–275
Yu. L. Pavlov, I. A. Cheplyukova, “On the asymptotics of degree structure of configuration graphs with bounded number of edges”, Discrete Math. Appl., 29:4 (2019), 219–232
Yu. L. Pavlov, E. V. Khvorostyanskaya, “On the limit distributions of the degrees of vertices in configuration graphs with a bounded number of edges”, Sb. Math., 207:3 (2016), 400–417
Yu. L. Pavlov, E. V. Feklistova, “On limit behavior of maximum vertex degree in a conditional configuration graph near critical points”, Discrete Math. Appl., 27:4 (2017), 213–222