Daghestan Electronic Mathematical Reports
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Daghestan Electronic Mathematical Reports:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Daghestan Electronic Mathematical Reports, 2016, Issue 6, Pages 1–24
DOI: https://doi.org/10.31029/demr.6.1
(Mi demr26)
 

This article is cited in 6 scientific papers (total in 6 papers)

Asymptotic properties of polynomials, orthogonal in Sobolev sence and associated with the Jacobi polynomials

I. I. Sharapudinovab

a Daghestan Scientific Centre of RAS
b Daghestan State Pedagogical University
Full-text PDF (489 kB) Citations (6)
References:
Abstract: We consider polynomials pr,nα,β(x) (n=0,1,), generated by classical Jacobi polynomials pnα,β(x) and forming orthonormal system with respect to Sobolev-type inner product
<f,g>=ν=0r1f(ν)(1)g(ν)(1)+11f(r)(t)g(r)(t)ρ(t)dt,
where ρ(x)=(1x)α(1+x)β – Jacobi weight function. The explicit \linebreak representations for polynomials pr,nα,β(x) are obtained and using these ones the asymptotic properties of polynomials pr,nα,β(x) are investigated.
Keywords: orthogonal polynomials, Sobolev orthogonal polynomials, Jacobi polynomials, Chebyshev polynomials of the first kind, Legendre polynomials.
Received: 27.06.2016
Revised: 09.08.2016
Accepted: 10.08.2016
Bibliographic databases:
Document Type: Article
UDC: 517.538
Language: Russian
Citation: I. I. Sharapudinov, “Asymptotic properties of polynomials, orthogonal in Sobolev sence and associated with the Jacobi polynomials”, Daghestan Electronic Mathematical Reports, 2016, no. 6, 1–24
Citation in format AMSBIB
\Bibitem{Sha16}
\by I.~I.~Sharapudinov
\paper Asymptotic properties of polynomials, orthogonal in Sobolev sence and associated with the Jacobi polynomials
\jour Daghestan Electronic Mathematical Reports
\yr 2016
\issue 6
\pages 1--24
\mathnet{http://mi.mathnet.ru/demr26}
\crossref{https://doi.org/10.31029/demr.6.1}
\elib{https://elibrary.ru/item.asp?id=29409283}
Linking options:
  • https://www.mathnet.ru/eng/demr26
  • https://www.mathnet.ru/eng/demr/y2016/i6/p1
  • This publication is cited in the following 6 articles:
    1. I. I. Sharapudinov, “Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs”, Izv. Math., 83:2 (2019), 391–412  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. I. I. Sharapudinov, “Sobolev-orthogonal systems of functions and some of their applications”, Russian Math. Surveys, 74:4 (2019), 659–733  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. M. G. Magomed-Kasumov, S. R. Magomedov, “Spektralnyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii posredstvom ortogonalnoi v smysle Soboleva sistemy funktsii, porozhdennoi sistemoi Khaara”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 10, 50–60  mathnet  crossref
    4. M. S. Sultanakhmedov, T. N. Shakh-Emirov, “Bystryi algoritm resheniya zadachi Koshi dlya ODU s pomoschyu ortogonalnykh po Sobolevu polinomov, porozhdennykh polinomami Chebysheva pervogo roda”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 10, 66–76  mathnet  crossref
    5. I. I. Sharapudinov, “O priblizhenii resheniya zadachi Koshi dlya nelineinykh sistem ODU posredstvom ryadov Fure po funktsiyam, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 66–76  mathnet  crossref
    6. I. I. Sharapudinov, M. G. Magomed-Kasumov, “Chislennyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi sistemoi kosinusov”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 8, 53–60  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Daghestan Electronic Mathematical Reports
    Statistics & downloads:
    Abstract page:399
    Full-text PDF :105
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025