Abstract:
We consider polynomials pα,βr,n(x)(n=0,1,…), generated by classical Jacobi polynomials pα,βn(x) and forming orthonormal system with respect to Sobolev-type inner product
<f,g>=r−1∑ν=0f(ν)(−1)g(ν)(−1)+∫1−1f(r)(t)g(r)(t)ρ(t)dt,
where ρ(x)=(1−x)α(1+x)β – Jacobi weight function.
The explicit \linebreak representations for polynomials pα,βr,n(x) are obtained and using these ones the asymptotic properties of polynomials pα,βr,n(x) are investigated.
Keywords:
orthogonal polynomials, Sobolev orthogonal polynomials, Jacobi polynomials, Chebyshev polynomials of the first kind, Legendre polynomials.
Citation:
I. I. Sharapudinov, “Asymptotic properties of polynomials, orthogonal in Sobolev sence and associated with the Jacobi polynomials”, Daghestan Electronic Mathematical Reports, 2016, no. 6, 1–24
\Bibitem{Sha16}
\by I.~I.~Sharapudinov
\paper Asymptotic properties of polynomials, orthogonal in Sobolev sence and associated with the Jacobi polynomials
\jour Daghestan Electronic Mathematical Reports
\yr 2016
\issue 6
\pages 1--24
\mathnet{http://mi.mathnet.ru/demr26}
\crossref{https://doi.org/10.31029/demr.6.1}
\elib{https://elibrary.ru/item.asp?id=29409283}
Linking options:
https://www.mathnet.ru/eng/demr26
https://www.mathnet.ru/eng/demr/y2016/i6/p1
This publication is cited in the following 6 articles:
I. I. Sharapudinov, “Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs”, Izv. Math., 83:2 (2019), 391–412
I. I. Sharapudinov, “Sobolev-orthogonal systems of functions and some of their applications”, Russian Math. Surveys, 74:4 (2019), 659–733
M. G. Magomed-Kasumov, S. R. Magomedov, “Spektralnyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii posredstvom ortogonalnoi v smysle Soboleva sistemy funktsii, porozhdennoi sistemoi Khaara”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 10, 50–60
M. S. Sultanakhmedov, T. N. Shakh-Emirov, “Bystryi algoritm resheniya zadachi Koshi dlya ODU s pomoschyu ortogonalnykh po Sobolevu polinomov, porozhdennykh polinomami Chebysheva pervogo roda”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 10, 66–76
I. I. Sharapudinov, “O priblizhenii resheniya zadachi Koshi dlya nelineinykh sistem ODU posredstvom ryadov Fure po funktsiyam, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 66–76
I. I. Sharapudinov, M. G. Magomed-Kasumov, “Chislennyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi sistemoi kosinusov”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 8, 53–60