Abstract:
Using Chebyshev polynomials Tn(x)=cos(narccosx)(n=0,1,…)Tn(x)=cos(narccosx)(n=0,1,…), for any natural rr we build a new system of polynomials {Tr,k(x)}∞k=0{Tr,k(x)}∞k=0, orthonormal with respect to the Sobolev type inner product of the following form
<f,g>=r−1∑ν=0f(ν)(−1)g(ν)(−1)+∫1−1f(r)(t)g(r)(t)κ(t)dt,<f,g>=r−1∑ν=0f(ν)(−1)g(ν)(−1)+∫1−1f(r)(t)g(r)(t)κ(t)dt,
where κ(t)=2π(1−t2)−12κ(t)=2π(1−t2)−12. The convergence of the Fourier series by the system {Tr,k(x)}∞k=0{Tr,k(x)}∞k=0 is investigated. We consider the important special cases of systems of this type. For these instances we obtain explicit representations, that can be used in the study of asymptotic properties of functions Tr,k(x)Tr,k(x) when k→∞k→∞ and study of the approximative properties of Fourier sums by the system {Tr,k(x)}∞k=0{Tr,k(x)}∞k=0.
Keywords:
orthogonal polynomials, Sobolev orthogonal polynomials, Chebyshev polynomials of the first kind.
Citation:
I. I. Sharapudinov, M. G. Magomed-Kasumov, S. R. Magomedov, “Sobolev orthogonal polynomials, associated with the Chebyshev polynomials of the first kind”, Daghestan Electronic Mathematical Reports, 2015, no. 4, 1–14
\Bibitem{ShaMagMag15}
\by I.~I.~Sharapudinov, M.~G.~Magomed-Kasumov, S.~R.~Magomedov
\paper Sobolev orthogonal polynomials, associated with the Chebyshev polynomials of the first kind
\jour Daghestan Electronic Mathematical Reports
\yr 2015
\issue 4
\pages 1--14
\mathnet{http://mi.mathnet.ru/demr15}
\crossref{https://doi.org/10.31029/demr.4.1}
\elib{https://elibrary.ru/item.asp?id=27311207}
Linking options:
https://www.mathnet.ru/eng/demr15
https://www.mathnet.ru/eng/demr/y2015/i4/p1
This publication is cited in the following 5 articles:
M. G. Magomed-Kasumov, “A Sobolev Orthogonal System of Functions Generated by a Walsh System”, Math. Notes, 105:4 (2019), 543–549
M. G. Magomed-Kasumov, S. R. Magomedov, “Bystroe vychislenie lineinykh kombinatsii sobolevskikh funktsii, porozhdennykh funktsiyami Khaara”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 9, 7–14
M. G. Magomed-Kasumov, S. R. Magomedov, “Spektralnyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii posredstvom ortogonalnoi v smysle Soboleva sistemy funktsii, porozhdennoi sistemoi Khaara”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 10, 50–60
M. S. Sultanakhmedov, T. N. Shakh-Emirov, “Bystryi algoritm resheniya zadachi Koshi dlya ODU s pomoschyu ortogonalnykh po Sobolevu polinomov, porozhdennykh polinomami Chebysheva pervogo roda”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 10, 66–76
I. I. Sharapudinov, M. G. Magomed-Kasumov, “Chislennyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi sistemoi kosinusov”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 8, 53–60