Loading [MathJax]/jax/output/CommonHTML/jax.js
Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 520, Number 1, Pages 64–69
DOI: https://doi.org/10.31857/S2686954324060106
(Mi danma578)
 

MATHEMATICS

Boundary value problems for ordinary differential equations with linear dependence on the spectral parameter

V. S. Kobenkoab, A. A. Shkalikovab

a Lomonosov Moscow State University, Moscow, Russia
b Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
Abstract: The paper considers boundary value problems generated by an ordinary differential expression of the nth order and arbitrary boundary conditions with linear dependence on the spectral parameter both in the equation and the boundary conditions. Classes of problems are defined, which are called regular and strongly regular. Linear operators in the space H=L2[0,1]Cm, mn, are assigned to these problems, and the corresponding adjoint operators are constructed in explicit form. In the general form, we solve the problem of selecting “superfluous” eigenfunctions, which was previously studied only for the special cases of second- and fourth-order equations. Namely, a criterion is found for selecting m eigen- or associated (root) functions of a regular problem so that the remaining system of root functions forms a Riesz basis or a Riesz basis with parenthesis in the original space L2[0,1].
Keywords: boundary value problems for ordinary differential equations, spectral parameter in boundary conditions, regular spectral problems, Riesz basis.
Funding agency Grant number
Russian Science Foundation 20-11-20261
This work was supported by the Russian Science Foundation (project no. 20-11-20261) and was performed at Lomonosov Moscow State University.
Received: 22.10.2024
Revised: 08.10.2024
Accepted: 10.11.2024
English version:
Doklady Mathematics, 2024, Volume 110, Issue 3, Pages 506–510
DOI: https://doi.org/10.1134/S1064562424602427
Bibliographic databases:
Document Type: Article
UDC: 517.927.25
Language: Russian
Citation: V. S. Kobenko, A. A. Shkalikov, “Boundary value problems for ordinary differential equations with linear dependence on the spectral parameter”, Dokl. RAN. Math. Inf. Proc. Upr., 520:1 (2024), 64–69; Dokl. Math., 110:3 (2024), 506–510
Citation in format AMSBIB
\Bibitem{KobShk24}
\by V.~S.~Kobenko, A.~A.~Shkalikov
\paper Boundary value problems for ordinary differential equations with linear dependence on the spectral parameter
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 520
\issue 1
\pages 64--69
\mathnet{http://mi.mathnet.ru/danma578}
\crossref{https://doi.org/10.31857/S2686954324060106}
\elib{https://elibrary.ru/item.asp?id=80301240}
\transl
\jour Dokl. Math.
\yr 2024
\vol 110
\issue 3
\pages 506--510
\crossref{https://doi.org/10.1134/S1064562424602427}
Linking options:
  • https://www.mathnet.ru/eng/danma578
  • https://www.mathnet.ru/eng/danma/v520/i1/p64
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025