Loading [MathJax]/jax/output/CommonHTML/jax.js
Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 509, Pages 5–7
DOI: https://doi.org/10.31857/S2686954322600628
(Mi danma352)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Integrability of a geodesic flow on the intersection of several confocal quadrics

G. V. Belozerov

Lomonosov Moscow State University, Moscow, Russia
Citations (1)
References:
Abstract: The classical Jacobi–Chasles theorem states that tangent lines drawn at all points of a geodesic curve on a quadric in n-dimensional Euclidean space are tangent, in addition to the given quadric, to n2 other confocal quadrics, which are the same for all points of the geodesic curve. This theorem immediately implies the integrability of a geodesic flow on an ellipsoid. In this paper, we prove a generalization of this result for a geodesic flow on the intersection of several confocal quadrics. Moreover, if we add the Hooke’s potential field centered at the origin to such a system, the integrability of the problem is preserved.
Keywords: integrable system, confocal quadrics, elliptic coordinates.
Presented: A. T. Fomenko
Received: 19.10.2022
Revised: 26.10.2022
Accepted: 20.12.2022
English version:
Doklady Mathematics, 2023, Volume 107, Issue 1, Pages 1–3
DOI: https://doi.org/10.1134/S1064562423700382
Bibliographic databases:
Document Type: Article
UDC: 514.745.82
Language: Russian
Citation: G. V. Belozerov, “Integrability of a geodesic flow on the intersection of several confocal quadrics”, Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023), 5–7; Dokl. Math., 107:1 (2023), 1–3
Citation in format AMSBIB
\Bibitem{Bel23}
\by G.~V.~Belozerov
\paper Integrability of a geodesic flow on the intersection of several confocal quadrics
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 509
\pages 5--7
\mathnet{http://mi.mathnet.ru/danma352}
\crossref{https://doi.org/10.31857/S2686954322600628}
\elib{https://elibrary.ru/item.asp?id=50436194}
\transl
\jour Dokl. Math.
\yr 2023
\vol 107
\issue 1
\pages 1--3
\crossref{https://doi.org/10.1134/S1064562423700382}
Linking options:
  • https://www.mathnet.ru/eng/danma352
  • https://www.mathnet.ru/eng/danma/v509/p5
  • This publication is cited in the following 1 articles:
    1. G. V. Belozerov, A. T. Fomenko, “Generalized Jacobi–Chasles theorem in non-Euclidean spaces”, Sb. Math., 215:9 (2024), 1159–1181  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:202
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025