Abstract:
A regularized damped Euler system in two-dimensional and three-dimensional setting is considered. The existence of a global attractor is proved and explicit estimates of its fractal dimension are given. In the case of periodic boundary conditions both in two-dimensional and three-dimensional cases, it is proved that the obtained upper bounds are sharp in the limit a→0+, where a is the parameter describing smoothing of the vector field in the nonlinear term.
Citation:
S. V. Zelik, A. A. Ilyin, A. G. Kostyanko, “Sharp dimension estimates for the attractors of the regularized damped Euler system”, Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021), 13–16; Dokl. Math., 104:1 (2021), 169–172
\Bibitem{ZelIlyKos21}
\by S.~V.~Zelik, A.~A.~Ilyin, A.~G.~Kostyanko
\paper Sharp dimension estimates for the attractors of the regularized damped Euler system
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 499
\pages 13--16
\mathnet{http://mi.mathnet.ru/danma183}
\crossref{https://doi.org/10.31857/S2686954321040160}
\zmath{https://zbmath.org/?q=an:1477.35149}
\elib{https://elibrary.ru/item.asp?id=46532744}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 1
\pages 169--172
\crossref{https://doi.org/10.1134/S1064562421040165}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118742999}
Linking options:
https://www.mathnet.ru/eng/danma183
https://www.mathnet.ru/eng/danma/v499/p13
This publication is cited in the following 2 articles:
S. V. Zelik, A. A. Ilyin, A. G. Kostyanko, “Estimates for the Dimension of Attractors of a Regularized Euler System with Dissipation on the Sphere”, Math. Notes, 111:1 (2022), 47–57
A. Ilyin, A. Kostianko, S. Zelik, “Trajectory attractors for 3D damped Euler equations and their approximation”, Discrete and Continuous Dynamical Systems-S, 15:8 (2022), 2275