Abstract:
It is shown how to apply the Bellman function method to general operators on martingales, i.e., to operators that are not necessarily martingale transforms. As examples of such operators, we consider the Haar transforms and an operator whose Lp-boundedness implies the Rubio de Francia inequality for the Walsh system. For the corresponding Bellman function, the Bellman induction is carried out and a Bellman candidate is constructed.
Keywords:
Burkholder method, Gundy theorem, Walsh system, Rubio de Francia inequality, Haar transform.
The work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”. The second author also acknowledges the support of the HSE University Basic Research Program.
Presented:S. V. Kislyakov Received: 19.03.2021 Revised: 19.03.2021 Accepted: 06.04.2021
Citation:
V. A. Borovitskii, N. N. Osipov, A. S. Tselishchev, “On the Bellman function method for operators on martingales”, Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 27–30; Dokl. Math., 103:3 (2021), 118–121
\Bibitem{BorOsiTse21}
\by V.~A.~Borovitskii, N.~N.~Osipov, A.~S.~Tselishchev
\paper On the Bellman function method for operators on martingales
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 498
\pages 27--30
\mathnet{http://mi.mathnet.ru/danma172}
\crossref{https://doi.org/10.31857/S2686954321030061}
\zmath{https://zbmath.org/?q=an:1477.42027}
\elib{https://elibrary.ru/item.asp?id=46153885}
\transl
\jour Dokl. Math.
\yr 2021
\vol 103
\issue 3
\pages 118--121
\crossref{https://doi.org/10.1134/S1064562421030066}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111220457}
Linking options:
https://www.mathnet.ru/eng/danma172
https://www.mathnet.ru/eng/danma/v498/p27
This publication is cited in the following 1 articles:
V. Borovitskiy, N. N. Osipov, A. Tselishchev, “Burkholder meets Gundy: Bellman function method for general operators on martingales”, Advances in Mathematics, 410 (2022), 108746