Abstract:
We obtain broad sufficient conditions for the boundedness of distribution densities of homogeneous functions on spaces with Gaussian measures. Estimates for the distribution densities of maxima of quadratic forms are obtained.
Keywords:
Gaussian measure, homogeneous function, distribution density.
Citation:
V. I. Bogachev, E. D. Kosov, S. N. Popova, “Densities of distributions of homogeneous functions of Gaussian random vectors”, Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020), 17–21; Dokl. Math., 102:3 (2020), 460–463
\Bibitem{BogKosPop20}
\by V.~I.~Bogachev, E.~D.~Kosov, S.~N.~Popova
\paper Densities of distributions of homogeneous functions of Gaussian random vectors
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 495
\pages 17--21
\mathnet{http://mi.mathnet.ru/danma128}
\crossref{https://doi.org/10.31857/S2686954320060211}
\zmath{https://zbmath.org/?q=an:7424665}
\elib{https://elibrary.ru/item.asp?id=44367194}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 3
\pages 460--463
\crossref{https://doi.org/10.1134/S106456242006023X}
Linking options:
https://www.mathnet.ru/eng/danma128
https://www.mathnet.ru/eng/danma/v495/p17
This publication is cited in the following 1 articles:
V. I. Bogachev, “Chebyshev–Hermite polynomials and distributions of polynomials in Gaussian random variables”, Theory Probab. Appl., 66:4 (2022), 550–569