Abstract:
We define the scale Qp, n−1<p<∞, of homeomorphisms of spatial domains in Rn, a geometric description of which is due to the control of the behavior of the p-capacity of condensers in the image through the weighted p-capacity of the condensers in the preimage. For p=n the class Qn of mappings contains the class of so-called Qp-homeomorphisms, which have been actively studied over the past 25 years. An equivalent functional and analytic description of these classes Qp is obtained. It is based on the problem of the properties of the composition operator of a weighted Sobolev space into a nonweighted one induced by a map inverse to some of the class Qp.
This work was supported by the Mathematical Center in Akademgorodok with the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2019-1613.
Presented:Yu. G. Reshetnyak Received: 18.05.2020 Revised: 18.05.2020 Accepted: 01.07.2020
Citation:
S. K. Vodopyanov, “Composition operators on weighted Sobolev spaces and the theory of Qp-homeomorphisms”, Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020), 21–25; Dokl. Math., 102:2 (2020), 371–375
\Bibitem{Vod20}
\by S.~K.~Vodopyanov
\paper Composition operators on weighted Sobolev spaces and the theory of $\mathscr{Q}_p$-homeomorphisms
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 494
\pages 21--25
\mathnet{http://mi.mathnet.ru/danma110}
\crossref{https://doi.org/10.31857/S268695432005046X}
\zmath{https://zbmath.org/?q=an:1477.30053}
\elib{https://elibrary.ru/item.asp?id=44344641}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 2
\pages 371--375
\crossref{https://doi.org/10.1134/S1064562420050440}
Linking options:
https://www.mathnet.ru/eng/danma110
https://www.mathnet.ru/eng/danma/v494/p21
This publication is cited in the following 9 articles:
Alexander Menovschikov, Alexander Ukhlov, “Composition Operators on Sobolev Spaces and Q-Homeomorphisms”, Comput. Methods Funct. Theory, 24:1 (2024), 149
VLADIMIR GOL'DSHTEIN, EVGENY SEVOST'YANOV, ALEXANDER UKHLOV, “COMPOSITION OPERATORS ON SOBOLEV SPACES AND”, MR, 26(76):2 (2024), 101
Izv. Math., 87:4 (2023), 683–725
S. K. Vodopyanov, “Coincidence of set functions in quasiconformal analysis”, Sb. Math., 213:9 (2022), 1157–1186
S. K. Vodopyanov, “Two-weighted composition operators on Sobolev spaces and quasiconformal analysis”, J. Math. Sci., 266:3 (2022), 491
S. K. Vodopyanov, N. A. Evseev, “Functional and analytical properties of a class of mappings of quasiconformal analysis on Carnot groups”, Siberian Math. J., 63:2 (2022), 233–261
S. K. Vodopyanov, A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Math., 85:5 (2021), 883–931
Alexander Menovschikov, Alexander Ukhlov, “Composition operators on Hardy-Sobolev spaces and BMO-quasiconformal mappings”, J Math Sci, 258:3 (2021), 313
S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Siberian Math. J., 62:6 (2021), 1010–1025