Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 494, Pages 21–25
DOI: https://doi.org/10.31857/S268695432005046X
(Mi danma110)
 

This article is cited in 9 scientific papers (total in 9 papers)

MATHEMATICS

Composition operators on weighted Sobolev spaces and the theory of Qp-homeomorphisms

S. K. Vodopyanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
Full-text PDF (188 kB) Citations (9)
References:
Abstract: We define the scale Qp, n1<p<, of homeomorphisms of spatial domains in Rn, a geometric description of which is due to the control of the behavior of the p-capacity of condensers in the image through the weighted p-capacity of the condensers in the preimage. For p=n the class Qn of mappings contains the class of so-called Qp-homeomorphisms, which have been actively studied over the past 25 years. An equivalent functional and analytic description of these classes Qp is obtained. It is based on the problem of the properties of the composition operator of a weighted Sobolev space into a nonweighted one induced by a map inverse to some of the class Qp.
Keywords: Sobolev space, composition operator, quasiconformal analysis, capacity estimate.
Funding agency Grant number
Mathematical Center in Akademgorodok 075-15-2019-1613
This work was supported by the Mathematical Center in Akademgorodok with the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2019-1613.
Presented: Yu. G. Reshetnyak
Received: 18.05.2020
Revised: 18.05.2020
Accepted: 01.07.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 2, Pages 371–375
DOI: https://doi.org/10.1134/S1064562420050440
Bibliographic databases:
Document Type: Article
UDC: 517.518+517.54
Language: Russian
Citation: S. K. Vodopyanov, “Composition operators on weighted Sobolev spaces and the theory of Qp-homeomorphisms”, Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020), 21–25; Dokl. Math., 102:2 (2020), 371–375
Citation in format AMSBIB
\Bibitem{Vod20}
\by S.~K.~Vodopyanov
\paper Composition operators on weighted Sobolev spaces and the theory of $\mathscr{Q}_p$-homeomorphisms
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 494
\pages 21--25
\mathnet{http://mi.mathnet.ru/danma110}
\crossref{https://doi.org/10.31857/S268695432005046X}
\zmath{https://zbmath.org/?q=an:1477.30053}
\elib{https://elibrary.ru/item.asp?id=44344641}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 2
\pages 371--375
\crossref{https://doi.org/10.1134/S1064562420050440}
Linking options:
  • https://www.mathnet.ru/eng/danma110
  • https://www.mathnet.ru/eng/danma/v494/p21
  • This publication is cited in the following 9 articles:
    1. Alexander Menovschikov, Alexander Ukhlov, “Composition Operators on Sobolev Spaces and Q-Homeomorphisms”, Comput. Methods Funct. Theory, 24:1 (2024), 149  crossref  mathscinet
    2. VLADIMIR GOL'DSHTEIN, EVGENY SEVOST'YANOV, ALEXANDER UKHLOV, “COMPOSITION OPERATORS ON SOBOLEV SPACES AND”, MR, 26(76):2 (2024), 101  crossref
    3. Izv. Math., 87:4 (2023), 683–725  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. S. K. Vodopyanov, “Coincidence of set functions in quasiconformal analysis”, Sb. Math., 213:9 (2022), 1157–1186  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. S. K. Vodopyanov, “Two-weighted composition operators on Sobolev spaces and quasiconformal analysis”, J. Math. Sci., 266:3 (2022), 491  crossref  mathscinet
    6. S. K. Vodopyanov, N. A. Evseev, “Functional and analytical properties of a class of mappings of quasiconformal analysis on Carnot groups”, Siberian Math. J., 63:2 (2022), 233–261  mathnet  mathnet  crossref  crossref  mathscinet
    7. S. K. Vodopyanov, A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Math., 85:5 (2021), 883–931  mathnet  mathnet  crossref  crossref  mathscinet  isi  scopus
    8. Alexander Menovschikov, Alexander Ukhlov, “Composition operators on Hardy-Sobolev spaces and BMO-quasiconformal mappings”, J Math Sci, 258:3 (2021), 313  crossref  crossref  mathscinet
    9. S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Siberian Math. J., 62:6 (2021), 1010–1025  mathnet  mathnet  crossref  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :58
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025