Doklady Akademii Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Akademii Nauk, 2018, Volume 479, Number 5, Pages 485–488
DOI: https://doi.org/10.7868/S0869565218110014
(Mi dan47527)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the stability of a periodic Hamiltonian system with one degree of freedom in a transcendental case

B. S. Bardinab

a Moscow Aviation Institute (National Research University)
b Russian Academy of Sciences
Citations (3)
Abstract: AbstractThe stability of an equilibrium of a nonautonomous Hamiltonian system with one degree of freedom whose Hamiltonian function depends 2ГЏВЂ-periodically on time and is analytic near the equilibrium is considered. The multipliers of the system linearized around the equilibrium are assumed to be multiple and equal to 1 orГўВЂВ“1. Sufficient conditions are found under which a transcendental case occurs, i.e., stability cannot be determined by analyzing the finite-power terms in the series expansion of the Hamiltonian about the equilibrium. The equilibrium is proved to be unstable in the transcendental case.
English version:
Doklady Mathematics, 2018, Volume 97, Issue 2, Pages 161–163
DOI: https://doi.org/10.1134/S1064562418020163
Bibliographic databases:
Document Type: Article
UDC: 531.36
Language: Russian
Linking options:
  • https://www.mathnet.ru/eng/dan47527
  • This publication is cited in the following 3 articles:
    1. B. S. Bardin, A. A. Savin, “On the orbital stability of pendulum motions of a rigid body in the Hess case”, Dokl. Math., 109:1 (2024), 52–55  mathnet  mathnet  crossref  crossref
    2. Boris S. Bardin, Víctor Lanchares, “Stability of a One-degree-of-freedom Canonical System in the Case of Zero Quadratic and Cubic Part of a Hamiltonian”, Regul. Chaotic Dyn., 25:3 (2020), 237–249  mathnet  crossref  mathscinet
    3. B S Bardin, E V Volkov, “Stability Study of a Relative Equilibrium in the Planar Circular Restricted Four-Body Problem”, IOP Conf. Ser.: Mater. Sci. Eng., 927:1 (2020), 012012  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025