Doklady Akademii Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Akademii Nauk, 2017, Volume 474, Number 5, Pages 558–562
DOI: https://doi.org/10.7868/S0869565217050073
(Mi dan38015)
 

This article is cited in 2 scientific papers (total in 2 papers)

The Hamilton principle and the rolling motion of a symmetric ball

A. V. Borisovab, A. A. Kilinb, I. S. Mamaevbcd

a Blagonravov Mechanical Engineering Research Institute of RAS, Moscow, 117334 Russia
b Udmurt State University, Izhevsk, 426034, Russia
c Institute of Mathematics and Mechanics of the Ural Branch of RAS, Ekaterinburg, 620990 Russia
d Kalashnikov Izhevsk State Technical University, Izhevsk, 426069 Russia
Citations (2)
Funding agency Grant number
Ministry of Education and Science of the Russian Federation
Russian Foundation for Basic Research 15-08-09261-а
15-38-20879 мол_а_вед
This work was carried out within the framework of the state assignment given to the Ministry of Education and Science of the Russian Federation and was supported by the Russian Foundation for Basic Research, grants nos. 15-38-20879 mol_a_ved and 15-08-09261-a.
Received: 17.11.2016
English version:
Doklady Physics, 2017, Volume 62, Issue 6, Pages 314–317
DOI: https://doi.org/10.1134/S1028335817060052
Bibliographic databases:
Document Type: Article
Language: Russian
Linking options:
  • https://www.mathnet.ru/eng/dan38015
  • This publication is cited in the following 2 articles:
    1. T. B. Ivanova, “The Rolling of a Homogeneous Ball with Slipping on a Horizontal Rotating Plane”, Rus. J. Nonlin. Dyn., 15:2 (2019), 171–178  mathnet  crossref  mathscinet  elib
    2. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:136
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025