Loading [MathJax]/jax/output/SVG/config.js
Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2018, Volume 25, Issue 2, Pages 82–100
DOI: https://doi.org/10.17377/daio.2018.25.571
(Mi da897)
 

This article is cited in 1 scientific paper (total in 1 paper)

Complexity estimation for an algorithm of searching for zero of a piecewise linear convex function

E. V. Prosolupov, G. Sh. Tamasyan

St. Petersburg State University, 35 Universitetskii Ave., 198504 St. Petersburg, Russia
Full-text PDF (408 kB) Citations (1)
References:
Abstract: It is known that the problem of the orthogonal projection of a point to the standard simplex can be reduced to solution of a scalar equation. In this article, the complexity is analyzed of an algorithm of searching for zero of a piecewise linear convex function which is proposed by N. Maculan and G. Galdino de Paula, Jr. (Oper. Res. Lett. 8 (4), 219–222 (1989)). The analysis is carried out of the best and worst cases of the input data for the algorithm. To this end, the largest and smallest numbers of iterations of the algorithm are studied as functions of the size of the input data. It is shown that, in the case of equality of elements of the input set, the algorithm performs the smallest number of iterations. In the case of different elements of the input set, the number of iterations is maximal and depends rather weakly on the particular values of the elements of the set. The results of numerical experiments with random input data of large dimension are presented. Tab. 2, illustr. 2, bibliogr. 34.
Keywords: standard simplex, orthogonal projection of a point, zeros of function.
Received: 10.03.2017
Revised: 26.12.2017
English version:
Journal of Applied and Industrial Mathematics, 2018, Volume 12, Issue 2, Pages 325–333
DOI: https://doi.org/10.1134/S1990478918020126
Bibliographic databases:
Document Type: Article
UDC: 519.8
Language: Russian
Citation: E. V. Prosolupov, G. Sh. Tamasyan, “Complexity estimation for an algorithm of searching for zero of a piecewise linear convex function”, Diskretn. Anal. Issled. Oper., 25:2 (2018), 82–100; J. Appl. Industr. Math., 12:2 (2018), 325–333
Citation in format AMSBIB
\Bibitem{ProTam18}
\by E.~V.~Prosolupov, G.~Sh.~Tamasyan
\paper Complexity estimation for an algorithm of searching for zero of a~piecewise linear convex function
\jour Diskretn. Anal. Issled. Oper.
\yr 2018
\vol 25
\issue 2
\pages 82--100
\mathnet{http://mi.mathnet.ru/da897}
\crossref{https://doi.org/10.17377/daio.2018.25.571}
\elib{https://elibrary.ru/item.asp?id=34875797}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 2
\pages 325--333
\crossref{https://doi.org/10.1134/S1990478918020126}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047840847}
Linking options:
  • https://www.mathnet.ru/eng/da897
  • https://www.mathnet.ru/eng/da/v25/i2/p82
  • This publication is cited in the following 1 articles:
    1. V. N. Malozemov, G. Sh. Tamasyan, “A fast algorithm for solving a simple search problem”, Comput. Math. Math. Phys., 59:5 (2019), 851–856  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025