Loading [MathJax]/jax/output/CommonHTML/config.js
Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2014, Volume 21, Issue 3, Pages 53–63 (Mi da775)  

This article is cited in 2 scientific papers (total in 2 papers)

Stability of compatible systems of linear inequalities and linear separability

O. V. Muraveva

Moscow Pedagogical State University, 14 Krasnoprudnaya St., 107140 Moscow, Russia
Full-text PDF (255 kB) Citations (2)
References:
Abstract: We consider methods of correction of matrices (or correction of all parameters) of systems of linear constraints (equations and inequalities). We show that the problem of matrix correction of an inconsistent system of linear inequalities with a non-negativity condition is reduced to a linear program. A stability measure of the feasible solution to a linear system is defined as the minimal possible variation of parameters at which this solution does not satisfy the system. The problem of finding the most stable solution to the system is considered. The results are applied to construct an optimal separating hyperplane that is the most stable to variations of the objects. Bibliogr. 15.
Keywords: stability of compatible system of linear inequalities, matrix correction, separating hyperplane.
Received: 04.09.2013
Revised: 26.11.2013
English version:
Journal of Applied and Industrial Mathematics, 2014, Volume 8, Issue 3, Pages 349–356
DOI: https://doi.org/10.1134/S1990478914030065
Bibliographic databases:
Document Type: Article
UDC: 519.85
Language: Russian
Citation: O. V. Muraveva, “Stability of compatible systems of linear inequalities and linear separability”, Diskretn. Anal. Issled. Oper., 21:3 (2014), 53–63; J. Appl. Industr. Math., 8:3 (2014), 349–356
Citation in format AMSBIB
\Bibitem{Mur14}
\by O.~V.~Muraveva
\paper Stability of compatible systems of linear inequalities and linear separability
\jour Diskretn. Anal. Issled. Oper.
\yr 2014
\vol 21
\issue 3
\pages 53--63
\mathnet{http://mi.mathnet.ru/da775}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3242101}
\transl
\jour J. Appl. Industr. Math.
\yr 2014
\vol 8
\issue 3
\pages 349--356
\crossref{https://doi.org/10.1134/S1990478914030065}
Linking options:
  • https://www.mathnet.ru/eng/da775
  • https://www.mathnet.ru/eng/da/v21/i3/p53
  • This publication is cited in the following 2 articles:
    1. V. I. Erokhin, A. P. Kadochnikov, S. V. Sotnikov, “Linear Binary Classification under Interval Uncertainty of Data”, Sci. Tech. Inf. Proc., 51:6 (2024), 539  crossref
    2. V. V. Volkov, V. I. Erokhin, A. S. Krasnikov, A. V. Razumov, M. N. Khvostov, “Minimum-Euclidean-norm matrix correction for a pair of dual linear programming problems”, Comput. Math. Math. Phys., 57:11 (2017), 1757–1770  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :92
    References:65
    First page:8
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025