Computer Research and Modeling
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Computer Research and Modeling:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computer Research and Modeling, 2019, Volume 11, Issue 5, Pages 833–848
DOI: https://doi.org/10.20537/2076-7633-2019-11-5-833-848
(Mi crm745)
 

This article is cited in 11 scientific papers (total in 11 papers)

NUMERICAL METHODS AND THE BASIS FOR THEIR APPLICATION

Difference scheme for solving problems of hydrodynamics for large grid Peclet numbers

A. I. Sukhinova, A. E. Chistyakova, E. A. Protsenkob

a Don State Technical University, 1 Gagarin Square, Rostov-on-Don, 344000, Russia
b Taganrog Institute, named after A. P. Chekhov — branch of Rostov State University of Economics, 48 Initiative st., Taganrog, 347936, Russia
References:
Abstract: The paper discusses the development and application of the accounting rectangular cell fullness method with material substance, in particular, a liquid, to increase the smoothness and accuracy of a finite-difference solution of hydrodynamic problems with a complex shape of the boundary surface. Two problems of computational hydrodynamics are considered to study the possibilities of the proposed difference schemes: the spatial-two-dimensional flow of a viscous fluid between two coaxial semi-cylinders and the transfer of substances between coaxial semi-cylinders. Discretization of diffusion and convection operators was performed on the basis of the integro-interpolation method, taking into account the fullness of cells and without it. It is proposed to use a difference scheme, for solving the problem of diffusion–convection at large grid Peclet numbers, that takes into account the cell population function, and a scheme on the basis of linear combination of the Upwind and Standard Leapfrog difference schemes with weight coefficients obtained by minimizing the approximation error at small Courant numbers. As a reference, an analytical solution describing the Couette–Taylor flow is used to estimate the accuracy of the numerical solution. The relative error of calculations reaches 70 % in the case of the direct use of rectangular grids (stepwise approximation of the boundaries), under the same conditions using the proposed method allows to reduce the error to 6 %. It is shown that the fragmentation of a rectangular grid by 2–8 times in each of the spatial directions does not lead to the same increase in the accuracy that numerical solutions have, obtained taking into account the fullness of the cells. The proposed difference schemes on the basis of linear combination of the Upwind and Standard Leapfrog difference schemes with weighting factors of 2/3 and 1/3, respectively, obtained by minimizing the order of approximation error, for the diffusion–convection problem have a lower grid viscosity and, as a corollary, more precisely, describe the behavior of the solution in the case of large grid Peclet numbers.
Keywords: accounting of cell fullness, Upwind Leapfrog difference scheme, grid Peclet numbers.
Funding agency Grant number
Russian Foundation for Basic Research 19-07-00623
This work was supported by the Russian Foundation for Basic Research (project No. 19-07-00623).
Received: 14.07.2019
Revised: 11.08.2019
Accepted: 26.08.2019
Document Type: Article
UDC: 519.8
Language: Russian
Citation: A. I. Sukhinov, A. E. Chistyakov, E. A. Protsenko, “Difference scheme for solving problems of hydrodynamics for large grid Peclet numbers”, Computer Research and Modeling, 11:5 (2019), 833–848
Citation in format AMSBIB
\Bibitem{SukChiPro19}
\by A.~I.~Sukhinov, A.~E.~Chistyakov, E.~A.~Protsenko
\paper Difference scheme for solving problems of hydrodynamics for large grid Peclet numbers
\jour Computer Research and Modeling
\yr 2019
\vol 11
\issue 5
\pages 833--848
\mathnet{http://mi.mathnet.ru/crm745}
\crossref{https://doi.org/10.20537/2076-7633-2019-11-5-833-848}
Linking options:
  • https://www.mathnet.ru/eng/crm745
  • https://www.mathnet.ru/eng/crm/v11/i5/p833
  • This publication is cited in the following 11 articles:
    1. N. V. Kudinov, A. A. Filina, A. V. Nikitina, D. V. Bondarenko, I. F. Razveeva, “Simulation of Vertical Movements of Seawater in Stratified Reservoirs”, Vestnik Donskogo gosudarstvennogo tehničeskogo universiteta, 23:2 (2023), 212  crossref
    2. Abdulkhakim Salokhiddinov, Andre Savitsky, Maria Radkevich, Olga Ashirova, O. Tursunov, “Possibilities of solving two-dimensional hydrodynamic problems on the basis of the non-divergent form of recording the transport and conservation equations”, E3S Web Conf., 434 (2023), 01001  crossref
    3. A. E. Chistyakov, A. V. Nikitina, I. Yu. Kuznetsova, E. O. Rakhimbaeva, M. V. Porksheyan, “Investigation of the Approximation Error of the Difference Scheme for the Mathematical Model of Hydrodynamics”, Lobachevskii J Math, 44:5 (2023), 1839  crossref
    4. A. I. Sukhinov, A. E. Chistyakov, A. M. Atayan, I. Yu. Kuznetsova, V. N. Litvinov, A. V. Nikitina, “Matematicheskaya model protsessa osazhdeniya na dno mnogokomponentnoi vzvesi i izmeneniya sostava donnykh materialov”, Izv. IMI UdGU, 60 (2022), 73–89  mathnet  crossref  mathscinet
    5. A. I. Sukhinov, A. V. Nikitina, A. M. Atayan, V. N. Litvinov, Yu. V. Belova, A. E. Chistyakov, “Supercomputer simulation of hydrobiological processes of coastal systems”, Math. Models Comput. Simul., 14:4 (2022), 677–690  mathnet  mathnet  crossref  crossref
    6. Alexander Sukhinov, Alexander Chistyakov, Inna Kuznetsova, Yulia Belova, Alla Nikitina, “Mathematical Model of Suspended Particles Transport in the Estuary Area, Taking into Account the Aquatic Environment Movement”, Mathematics, 10:16 (2022), 2866  crossref
    7. A. I. Sukhinov, A. E. Chistyakov, I. Y. Kuznetsova, A. M. Atayan, A. V. Nikitina, “Regularized difference scheme for solving hydrodynamic problems”, Math. Models Comput. Simul., 14:5 (2022), 745–754  mathnet  crossref  crossref  mathscinet
    8. A E Chistyakov, E A Protsenko, I Y Kuznetsova, A V Nikitina, “Suspended particle transport process modeling based on 2D and 3D models”, J. Phys.: Conf. Ser., 1902:1 (2021), 012137  crossref
    9. Asya M. Atayan, Inna Yu. Kuznetsova, Communications in Computer and Information Science, 1437, Parallel Computational Technologies, 2021, 312  crossref
    10. A. I. Sukhinov, I. Yu. Kuznetsova, A. E. Chistyakov, E. A. Protsenko, Yu. V. Belova, “Studying the Accuracy and Applicability of the Finite Difference Scheme for Solving the Diffusion–Convection Problem at Large Grid Péclet Numbers”, J Appl Mech Tech Phy, 62:7 (2021), 1255  crossref
    11. A.I. Sukhinov, I.Y. Kuznetsova, A.E. Chistyakov, E.A. Protsenko, Y.V. Belova, “Study of the accuracy and applicability of the difference scheme for solving the diffusion-convection problem at large grid Péclet numbers”, Comp. Contin. Mech., 13:4 (2020), 437  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computer Research and Modeling
    Statistics & downloads:
    Abstract page:360
    Full-text PDF :144
    References:37
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025