Loading [MathJax]/jax/output/SVG/config.js
Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2024, Volume 70, Issue 4, Pages 679–690
DOI: https://doi.org/10.22363/2413-3639-2024-70-4-679-690
(Mi cmfd568)
 

Linear inverse problems for integro-differential equations in Banach spaces with a bounded operator

V. E. Fedorov, A. D. Godova

Chelyabinsk State University, Chelyabinsk, Russia
References:
Abstract: In this paper, we study the questions of well-posedness of linear inverse problems for equations in Banach spaces with an integro-differential operator of the Riemann–Liouville type and a bounded operator at the unknown function. A criterion of well-posedness is found for a problem with a constant unknown parameter; in the case of a scalar convolution kernel in an integro-differential operator, this criterion is formulated as conditions for the characteristic function of the inverse problem not to vanish on the spectrum of a bounded operator. Sufficient well-posedness conditions are obtained for a linear inverse problem with a variable unknown parameter. Abstract results are used in studying a model inverse problem for a partial differential equation.
Keywords: inverse problem, integro-differential equation, Riemann–Liouville type operator, well-posedness.
Funding agency Grant number
Russian Science Foundation 24-21-20015
The work was supported by a grant from the Russian Science Foundation and the Government of the Chelyabinsk Region (project 24-21-20015).
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. E. Fedorov, A. D. Godova, “Linear inverse problems for integro-differential equations in Banach spaces with a bounded operator”, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, CMFD, 70, no. 4, PFUR, M., 2024, 679–690
Citation in format AMSBIB
\Bibitem{FedGod24}
\by V.~E.~Fedorov, A.~D.~Godova
\paper Linear inverse problems for integro-differential equations in Banach spaces with~a~bounded operator
\inbook Proceedings of the Voronezh Winter Mathematical Krein School — 2024
\serial CMFD
\yr 2024
\vol 70
\issue 4
\pages 679--690
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd568}
\crossref{https://doi.org/10.22363/2413-3639-2024-70-4-679-690}
\edn{https://elibrary.ru/WWORZS}
Linking options:
  • https://www.mathnet.ru/eng/cmfd568
  • https://www.mathnet.ru/eng/cmfd/v70/i4/p679
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:18
    Full-text PDF :2
    References:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025