Loading [MathJax]/jax/output/SVG/config.js
Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2015, Volume 56, Pages 129–144 (Mi cmfd269)  

This article is cited in 5 scientific papers (total in 5 papers)

Optimal synthesis in the control problem of an $n$-link inverted pendulum with a moving base

L. A. Manitaa, M. I. Ronzhinab

a Moscow State Institute of Electronics and Mathematics — Higher School of Economics, Moscow
b Lomonosov Moscow State University, Moscow
Full-text PDF (299 kB) Citations (5)
References:
Abstract: In this paper, we consider the problem of stabilization of an $n$-link inverted pendulum on a movable base (cart). A cart is allowed to move along the horizontal axis. A force applied to the cart is considered as a control. The problem is to minimize the mean square deviation of the pendulum from the vertical line. For the linearized model, we show that, for small deviations from the upper unstable equilibrium position, the optimal regime contains trajectories with more and more frequent switchings. Namely, the optimal trajectories with infinite number of switchings are shown to attain, in finite time, the singular surface and then continue these motion with singular control over the singular surface, approaching the origin in an infinite time. It is shown that the costructed solutions are globally optimal.
English version:
Journal of Mathematical Sciences, 2017, Volume 221, Issue 1, Pages 137–153
DOI: https://doi.org/10.1007/s10958-017-3222-x
Document Type: Article
UDC: 517.97
Language: Russian
Citation: L. A. Manita, M. I. Ronzhina, “Optimal synthesis in the control problem of an $n$-link inverted pendulum with a moving base”, Optimal control, CMFD, 56, PFUR, M., 2015, 129–144; Journal of Mathematical Sciences, 221:1 (2017), 137–153
Citation in format AMSBIB
\Bibitem{ManRon15}
\by L.~A.~Manita, M.~I.~Ronzhina
\paper Optimal synthesis in the control problem of an $n$-link inverted pendulum with a~moving base
\inbook Optimal control
\serial CMFD
\yr 2015
\vol 56
\pages 129--144
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd269}
\transl
\jour Journal of Mathematical Sciences
\yr 2017
\vol 221
\issue 1
\pages 137--153
\crossref{https://doi.org/10.1007/s10958-017-3222-x}
Linking options:
  • https://www.mathnet.ru/eng/cmfd269
  • https://www.mathnet.ru/eng/cmfd/v56/p129
  • This publication is cited in the following 5 articles:
    1. N. B. Melnikov, M. I. Ronzhina, “Chattering extremals in control-affine stabilization problems”, Russian Math. Surveys, 79:5 (2024), 931–933  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. Larisa Manita, Mariya Ronzhina, “Optimal spiral-like solutions near a singular extremal in a two-input control problem”, DCDS-B, 27:6 (2022), 3325  crossref
    3. M. I. Ronzhina, L. A. Manita, L. V. Lokutsievskiy, “Neighborhood of the Second-Order Singular Regime in Problems with Control in a Disk”, Proc. Steklov Inst. Math., 315 (2021), 209–222  mathnet  crossref  crossref  mathscinet  isi
    4. Mikhail E. Semenov, Andrey M. Solovyov, Peter A. Meleshenko, Olesya I. Kanishcheva, Mechanisms and Machine Science, 95, Vibration Engineering and Technology of Machinery, 2021, 267  crossref
    5. L. Manita, M. Ronzhina, “Optimal control of a spherical inverted pendulum”, Lobachevskii J. Math., 38:5, SI (2017), 954–957  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:585
    Full-text PDF :279
    References:71
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025