Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2010, Volume 36, Pages 87–111 (Mi cmfd158)  

This article is cited in 3 scientific papers (total in 3 papers)

Boundary-value problems for fourth-order equations of hyperbolic and composite types

V. I. Korzyuk, O. A. Konopel'ko, E. S. Cheb

Belarusian State University, Belarus', Minsk
Full-text PDF (317 kB) Citations (3)
References:
Abstract: Boundary-value problems for fourth-order linear partial differential equations of hyperbolic and composite types are studied. The method of energy inequalities and averaging operators with variable step is used to prove existence and uniqueness theorems for strong solutions. The Riesz theorem on the representation of linear continuous functionals in Hilbert spaces is used to prove the existence and uniqueness theorems for generalized solutions.
English version:
Journal of Mathematical Sciences, 2010, Volume 171, Issue 1, Pages 89–115
DOI: https://doi.org/10.1007/s10958-010-0128-2
Bibliographic databases:
Document Type: Article
UDC: 517.951+517.956
Language: Russian
Citation: V. I. Korzyuk, O. A. Konopel'ko, E. S. Cheb, “Boundary-value problems for fourth-order equations of hyperbolic and composite types”, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, CMFD, 36, PFUR, M., 2010, 87–111; Journal of Mathematical Sciences, 171:1 (2010), 89–115
Citation in format AMSBIB
\Bibitem{KorKonChe10}
\by V.~I.~Korzyuk, O.~A.~Konopel'ko, E.~S.~Cheb
\paper Boundary-value problems for fourth-order equations of hyperbolic and composite types
\inbook Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17--24, 2008). Part~2
\serial CMFD
\yr 2010
\vol 36
\pages 87--111
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd158}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2752652}
\transl
\jour Journal of Mathematical Sciences
\yr 2010
\vol 171
\issue 1
\pages 89--115
\crossref{https://doi.org/10.1007/s10958-010-0128-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272756700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957822997}
Linking options:
  • https://www.mathnet.ru/eng/cmfd158
  • https://www.mathnet.ru/eng/cmfd/v36/p87
  • This publication is cited in the following 3 articles:
    1. V. I. Korzyuk, Ya. V. Rudko, “Klassicheskoe reshenie smeshannoi zadachi s usloviyami Dirikhle i Neimana dlya nelineinogo bivolnovogo uravneniya”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXV», Voronezh, 26-30 aprelya 2024 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 235, VINITI RAN, M., 2024, 40–56  mathnet  crossref
    2. V. I. Korzyuk, J. V. Rudzko, “Initial-boundary value problem with Dirichlet and Wentzell conditions for a mildly quasilinear biwave equation”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 166, no. 3, Izd-vo Kazanskogo un-ta, Kazan, 2024, 377–394  mathnet  crossref
    3. Victor Korzyuk, Nguyen Van Vinh, Nguyen Tuan Minh, “CLASSICAL SOLUTION OF THE CAUCHY PROBLEM FOR BIWAVE EQUATION: APPLICATION OF FOURIER TRANSFORM”, Mathematical Modelling and Analysis, 17:5 (2012), 630  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:588
    Full-text PDF :218
    References:89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025