Loading [MathJax]/jax/output/SVG/config.js
Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chelyab. Fiz.-Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 2023, Volume 8, Issue 3, Pages 331–350
DOI: https://doi.org/10.47475/2500-0101-2023-8-3-331-350
(Mi chfmj334)
 

Mathematics

Recovering of the heat transfer coefficient in transmission problems with imperfect contact conditions

S. G. Pyatkov, V. A. Belonogov

Yugra State University, Khanty-Mansiysk, Russia
References:
Abstract: We consider systems of parabolic equations and well-posedness questions in Sobolev spaces of inverse problems of recovering the heat transfer coefficients at the interface which are included in the transmission condition of the imperfect contact type. Under certain conditions on the data, it is demonstrated that there exists a unique solution to the problem. The proof employs a priori estimates and the fixed-point theorem.
Keywords: inverse problem, transmission problem, heat transfer coefficient, parabolic system, heat and mass transfer.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FENG-2023-0004
The study was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (topic “Analytical and numerical study of inverse problems on determining the parameters of sources of atmospheric or water pollution and (or) environmental parameters”, topic code FENG-2023-0004).
Received: 02.03.2023
Revised: 06.08.2023
Document Type: Article
UDC: 517.95
Language: Russian
Citation: S. G. Pyatkov, V. A. Belonogov, “Recovering of the heat transfer coefficient in transmission problems with imperfect contact conditions”, Chelyab. Fiz.-Mat. Zh., 8:3 (2023), 331–350
Citation in format AMSBIB
\Bibitem{PyaBel23}
\by S.~G.~Pyatkov, V.~A.~Belonogov
\paper Recovering of the heat transfer coefficient in transmission problems with imperfect contact conditions
\jour Chelyab. Fiz.-Mat. Zh.
\yr 2023
\vol 8
\issue 3
\pages 331--350
\mathnet{http://mi.mathnet.ru/chfmj334}
\crossref{https://doi.org/10.47475/2500-0101-2023-8-3-331-350}
Linking options:
  • https://www.mathnet.ru/eng/chfmj334
  • https://www.mathnet.ru/eng/chfmj/v8/i3/p331
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
    Statistics & downloads:
    Abstract page:120
    Full-text PDF :37
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025