Loading [MathJax]/jax/output/SVG/config.js
Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chelyab. Fiz.-Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 2020, Volume 5, Issue 2, Pages 218–232
DOI: https://doi.org/10.24411/2500-0101-2020-15209
(Mi chfmj183)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

Algorithms of minimization of Hausdorff deviation of a convex compact from a set of movable convex polygons

P. D. Lebedevab, A. A. Uspenskiiab, V. N. Ushakova

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
b Ural Federal University named after the first President of Russia B.N.Yeltsin, Yekaterin\-burg, Russia
Full-text PDF (847 kB) Citations (1)
References:
Abstract: We study the problem of finding the optimal location of a set of moving figures within the boundaries of a given convex set (arena) on the plane. The optimality criterion was chosen to minimize the Hausdorff deviation of the arena from the union of these moving objects. Numerical algorithms are proposed for solving the problem, based on dividing the arena into areas of influence of the figures (into generalized Dirichlet zones) and finding the optimal position of each of them within the boundaries of its area. When creating the algorithms, non-smooth optimization methods and the constructions of the geometric theory of approximations were used. A numerical simulation of the solution of the problem is performed for the case of three moving convex polygons.
Keywords: Hausdorff deviation, convex set, Chebyshev center, minimization, subdifferential.
Received: 19.03.2020
Revised: 10.05.2020
Document Type: Article
UDC: 514.174.5
Language: Russian
Citation: P. D. Lebedev, A. A. Uspenskii, V. N. Ushakov, “Algorithms of minimization of Hausdorff deviation of a convex compact from a set of movable convex polygons”, Chelyab. Fiz.-Mat. Zh., 5:2 (2020), 218–232
Citation in format AMSBIB
\Bibitem{LebUspUsh20}
\by P.~D.~Lebedev, A.~A.~Uspenskii, V.~N.~Ushakov
\paper Algorithms of minimization of Hausdorff deviation of a convex compact from a set of movable convex polygons
\jour Chelyab. Fiz.-Mat. Zh.
\yr 2020
\vol 5
\issue 2
\pages 218--232
\mathnet{http://mi.mathnet.ru/chfmj183}
\crossref{https://doi.org/10.24411/2500-0101-2020-15209}
Linking options:
  • https://www.mathnet.ru/eng/chfmj183
  • https://www.mathnet.ru/eng/chfmj/v5/i2/p218
  • This publication is cited in the following 1 articles:
    1. P. D. Lebedev, A. A. Uspenskii, V. N. Ushakov, “Iteratsionnye algoritmy minimizatsii khausdorfova rasstoyaniya mezhdu vypuklymi mnogogrannikami”, Izv. IMI UdGU, 57 (2021), 142–155  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
    Statistics & downloads:
    Abstract page:214
    Full-text PDF :104
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025