Loading [MathJax]/jax/output/CommonHTML/jax.js
Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2019, Volume 20, Issue 1, Pages 284–293
DOI: https://doi.org/10.22405/2226-8383-2018-20-1-284-293
(Mi cheb733)
 

Generalized Gaussian sums and Bernoulli polynomials

V. N. Chubarikov

Mechanics and Mathematics Faculty of Moscow State University named after M. V. Lomonosov, Moscow
References:
Abstract: The conception of Generalized Gaussian Sum Gf(m) for a periodic arithmetical functon with a period, is equal prime number q, for integers m,n is introduce:
Gf(m)=q1n=1(nq)f(mnq).
Here are considered the particular cases f(x)=Bν({x}),ν1, where Bν(x) — Bernoulli polynomials.
The paper uses the technique of finite Fourier series. If the function f(kq) is defined at k=0,1,,q1, it can be decomposed into a finite Fourier series
f(kq)=q1m=0cme2πimkq,cm=1qq1k=0f(kq)e2πimkq.

By decomposition into a finite Fourier series of a generalized Gauss sum
Gν(m)=Gν(m;Bν)=q1n=1(nq)Bν({x+mnq})
for ν=1 and ν=2 , new formulas are found that Express the value of the Legendre symbol through the full sums of periodic functions. This circumstance makes it possible to obtain new analytical properties of the corresponding Dirichlet series and arithmetic functions, which will be the topic of the following works.
An important property of the sums G1 and G2, namely:
G10, if q3(mod4) and G1=0, if q1(mod4);
G2=0, if q3(mod4) and G2=1q2q1n=1n2(nq), if q1(mod4).
Keywords: Gaussian sums, Bernoulli polynomials, the Legandre symbol.
Received: 01.02.2019
Accepted: 10.04.2019
Document Type: Article
UDC: 511.3
Language: Russian
Citation: V. N. Chubarikov, “Generalized Gaussian sums and Bernoulli polynomials”, Chebyshevskii Sb., 20:1 (2019), 284–293
Citation in format AMSBIB
\Bibitem{Chu19}
\by V.~N.~Chubarikov
\paper Generalized Gaussian sums and Bernoulli polynomials
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 1
\pages 284--293
\mathnet{http://mi.mathnet.ru/cheb733}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-1-284-293}
Linking options:
  • https://www.mathnet.ru/eng/cheb733
  • https://www.mathnet.ru/eng/cheb/v20/i1/p284
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:217
    Full-text PDF :82
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025