|
Generalized Gaussian sums and Bernoulli polynomials
V. N. Chubarikov Mechanics
and Mathematics Faculty of Moscow State University named after M. V. Lomonosov, Moscow
Abstract:
The conception of Generalized Gaussian Sum Gf(m) for a periodic arithmetical functon with a period, is equal prime number q, for integers m,n is introduce:
Gf(m)=q−1∑n=1(nq)f(mnq).
Here are considered the particular cases f(x)=Bν({x}),ν≥1, where Bν(x) — Bernoulli polynomials. The paper uses the technique of finite Fourier series. If the function f(kq) is defined at k=0,1,…,q−1, it can be decomposed into a finite Fourier series
f(kq)=q−1∑m=0cme2πimkq,cm=1qq−1∑k=0f(kq)e−2πimkq.
By decomposition into a finite Fourier series of a generalized Gauss sum
Gν(m)=Gν(m;Bν)=q−1∑n=1(nq)Bν({x+mnq})
for ν=1 and ν=2 , new formulas are found that Express the value of the Legendre symbol through the full sums of periodic functions. This circumstance makes it possible to obtain new analytical properties of the corresponding Dirichlet series and arithmetic functions, which will be the topic of the following works. An important property of the sums G1 and G2, namely: G1≠0, if q≡3(mod4) and G1=0, if q≡1(mod4); G2=0, if q≡3(mod4) and G2=1q2q−1∑n=1n2(nq), if q≡1(mod4).
Keywords:
Gaussian sums, Bernoulli polynomials, the Legandre symbol.
Received: 01.02.2019 Accepted: 10.04.2019
Citation:
V. N. Chubarikov, “Generalized Gaussian sums and Bernoulli polynomials”, Chebyshevskii Sb., 20:1 (2019), 284–293
Linking options:
https://www.mathnet.ru/eng/cheb733 https://www.mathnet.ru/eng/cheb/v20/i1/p284
|
Statistics & downloads: |
Abstract page: | 217 | Full-text PDF : | 82 | References: | 34 |
|