Loading [MathJax]/jax/output/CommonHTML/jax.js
Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2019, Volume 20, Issue 1, Pages 248–260
DOI: https://doi.org/10.22405/2226-8383-2018-20-1-248-260
(Mi cheb730)
 

This article is cited in 8 scientific papers (total in 8 papers)

The criterion of periodicity of continued fractions of key elements in hyperelliptic fields

V. P. Platonovab, G. V. Fedorovbc

a Steklov Mathematical Institute (MIAN), Moscow
b Federal State Institution «Scientific Research Institute for System Analysis of the Russian Academy of Sciences» (SRISA)
c Moscow State University (MSU), Moscow
Full-text PDF (663 kB) Citations (8)
References:
Abstract: The periodicity and quasi-periodicity of functional continued fractions in the hyperelliptic field L=Q(x)(f) has a more complex nature, than the periodicity of the numerical continued fractions of the elements of a quadratic fields. It is known that the periodicity of a continued fraction of the element f/hg+1, constructed by valuation associated with a polynomial h of first degree, is equivalent to the existence of nontrivial S-units in a field L of the genus g and is equivalent to the existence nontrivial torsion in a group of classes of divisors. This article has found an exact interval of values of sZ such that the elements f/hs have a periodic decomposition into a continued fraction, where fQ[x] is a squarefree polynomial of even degree. For polynomials f of odd degree, the problem of periodicity of continued fractions of elements of the form f/hs are discussed in the article [5], and it is proved that the length of the quasi-period does not exceed degree of the fundamental S-unit of L. The problem of periodicity of continued fractions of elements of the form f/hs for polynomials f of even degree is more complicated. This is underlined by the example we found of a polynomial f of degree 4, for which the corresponding continued fractions have an abnormally large period length. Earlier in the article [5] we found examples of continued fractions of elements of the hyperelliptic field L with a quasi-period length significantly exceeding the degree of the fundamental S-unit of L.
Keywords: continued fractions, fundamental units, S-units, torsion in the Jacobians, hyperelliptic fields, divisors, divisor class group.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations АААА-А19-119011590095-7
The publication was performed within the framework of the state assignment of SRISA (14 GP implementation of fundamental research) on the subject № 0065-2019-0011 (№АААА-А19-119011590095-7).
Received: 02.02.2019
Accepted: 10.04.2019
English version:
Doklady Mathematics (Supplementary issues), 2022, Volume 106, Issue 2, Pages 262–269
DOI: https://doi.org/10.1134/S1064562422700223
Document Type: Article
UDC: 511.6
Language: Russian
Citation: V. P. Platonov, G. V. Fedorov, “The criterion of periodicity of continued fractions of key elements in hyperelliptic fields”, Chebyshevskii Sb., 20:1 (2019), 248–260; Doklady Mathematics (Supplementary issues), 106:2 (2022), 262–269
Citation in format AMSBIB
\Bibitem{PlaFed19}
\by V.~P.~Platonov, G.~V.~Fedorov
\paper The criterion of periodicity of continued fractions of key elements in hyperelliptic fields
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 1
\pages 248--260
\mathnet{http://mi.mathnet.ru/cheb730}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-1-248-260}
\transl
\jour Doklady Mathematics (Supplementary issues)
\yr 2022
\vol 106
\issue 2
\pages 262--269
\crossref{https://doi.org/10.1134/S1064562422700223}
Linking options:
  • https://www.mathnet.ru/eng/cheb730
  • https://www.mathnet.ru/eng/cheb/v20/i1/p248
  • This publication is cited in the following 8 articles:
    1. G. V. Fedorov, “Continued Fractions and the Classification Problem for Elliptic Fields Over Quadratic Fields of Constants”, Math. Notes, 114:6 (2023), 1195–1211  mathnet  crossref  crossref
    2. G.V. Fedorov, “Ob otsenkakh dlin periodov funktsionalnykh nepreryvnykh drobei nad algebraicheskimi chislovymi polyami”, Chebyshevskii sb., 24:3 (2023), 162–189  mathnet  crossref
    3. G. V. Fedorov, “On the problem of describing elements of elliptic fields with a periodic expansion into a continued fraction over quadratic fields”, Dokl. Math., 106:1 (2022), 259–264  mathnet  crossref  crossref  elib
    4. V. P. Platonov, G. V. Fedorov, “On the classification problem for polynomials $f$ with a periodic continued fraction expansion of $\sqrt{f}$ in hyperelliptic fields”, Izv. Math., 85:5 (2021), 972–1007  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. V. P. Platonov, G. V. Fedorov, “On the problem of classification of periodic continued fractions in hyperelliptic fields”, Russian Math. Surveys, 75:4 (2020), 785–787  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. G. V. Fedorov, “O semeistvakh giperellipticheskikh krivykh nad polem ratsionalnykh chisel, yakobiany kotorykh soderzhat tochki krucheniya dannykh poryadkov”, Chebyshevskii sb., 21:1 (2020), 322–340  mathnet  crossref
    7. G. V. Fedorov, “On the period length of a functional continued fraction over a number field”, Dokl. Math., 102:3 (2020), 513–517  mathnet  crossref  crossref  zmath  elib
    8. G. V. Fedorov, “Ob ogranichennosti dlin periodov nepreryvnykh drobei klyuchevykh elementov giperellipticheskikh polei nad polem ratsionalnykh chisel”, Chebyshevskii sb., 20:4 (2019), 357–370  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :56
    References:48
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025