Loading [MathJax]/jax/output/SVG/config.js
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2021, Number 3, Pages 36–49 (Mi basm557)  

Strong stability for multiobjective investment problem with perturbed minimax risks of different types and parameterized optimality

Vladimir A. Emelicheva, Yury V. Nikulinb

a Belarusian State University, ave. Independence, 4, Minsk 220030, Belarus
b University of Turku, Vesilinnantie 5, Turku 20014, Finland
References:
Abstract: A multicriteria investment Boolean problem of minimizing lost profits with parameterized efficiency and different types of risks is formulated. The lower and upper bounds on the radius of the strong stability of efficient portfolios are obtained. Several earlier known results regarding strong stability of Pareto efficient and extreme portfolios are confirmed.
Keywords and phrases: multiobjective problem, investment, Pareto set, a set of extreme solutions, strong stability, Hölder's norms.
Received: 01.09.2021
Document Type: Article
MSC: 90C10, 90C29
Language: English
Citation: Vladimir A. Emelichev, Yury V. Nikulin, “Strong stability for multiobjective investment problem with perturbed minimax risks of different types and parameterized optimality”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2021, no. 3, 36–49
Citation in format AMSBIB
\Bibitem{EmeNik21}
\by Vladimir~A.~Emelichev, Yury~V.~Nikulin
\paper Strong stability for multiobjective investment problem with perturbed minimax risks of different types and parameterized optimality
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2021
\issue 3
\pages 36--49
\mathnet{http://mi.mathnet.ru/basm557}
Linking options:
  • https://www.mathnet.ru/eng/basm557
  • https://www.mathnet.ru/eng/basm/y2021/i3/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Statistics & downloads:
    Abstract page:121
    Full-text PDF :57
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025