Loading [MathJax]/jax/output/CommonHTML/jax.js
Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2010, Issue 7, Pages 70–82 (Mi at848)  

Statistical Methods in Reliability Theory

Multivariable goodness tests and approximation of the residues of quadratic forms

G. V. Martynov

Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: Consideration was given to the omega square Cramer–von Mises tests intended to verify the goodness hypothesis about the distribution of the observed multivariable random vector with the distribution in the unit cube. The limit distribution of the statistics of these tests was defined by the distribution of an infinite quadratic form in the normal random variables. For convenience of computing its distribution, the residue of the quadratic form was approximated by a finite linear combination of the χ2-distributed random variables. Formulas for determination of the residue parameters were established.
Presented by the member of Editorial Board: B. G. Volik

Received: 20.08.2009
English version:
Automation and Remote Control, 2010, Volume 71, Issue 7, Pages 1346–1357
DOI: https://doi.org/10.1134/S0005117910070088
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. V. Martynov, “Multivariable goodness tests and approximation of the residues of quadratic forms”, Avtomat. i Telemekh., 2010, no. 7, 70–82; Autom. Remote Control, 71:7 (2010), 1346–1357
Citation in format AMSBIB
\Bibitem{Mar10}
\by G.~V.~Martynov
\paper Multivariable goodness tests and approximation of the residues of quadratic forms
\jour Avtomat. i Telemekh.
\yr 2010
\issue 7
\pages 70--82
\mathnet{http://mi.mathnet.ru/at848}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2865934}
\zmath{https://zbmath.org/?q=an:1202.62061}
\transl
\jour Autom. Remote Control
\yr 2010
\vol 71
\issue 7
\pages 1346--1357
\crossref{https://doi.org/10.1134/S0005117910070088}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280126300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77955128629}
Linking options:
  • https://www.mathnet.ru/eng/at848
  • https://www.mathnet.ru/eng/at/y2010/i7/p70
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :136
    References:47
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025