Abstract:
The Pyatnitskii decomposition principle is used to stabilize the nominal motion of a controllable scleronomic holonomic mechanical system under the influence of a bounded perturbing force. We find conditions on the controlling force and the set of initial states that guarantee that the motion of this mechanical system occurs close to the nominal motion in such a way that deviations from nominal values lie inside given boundaries. The decomposition principle serves here as an instrument to ensure practical stability in the sense of La Salle and Lefshetz.
Presented by the member of Editorial Board:L. B. Rapoport
Citation:
M. M. Živanović, M. P. Lazarević, “Using the decomposition principle to stabilize the nominal motion of a mechanical system with given accuracy”, Avtomat. i Telemekh., 2012, no. 12, 65–88; Autom. Remote Control, 73:12 (2012), 2001–2020
\Bibitem{ZivLaz12}
\by M.~M.~{\v Z}ivanovi\'c, M.~P.~Lazarevi\'c
\paper Using the decomposition principle to stabilize the nominal motion of a~mechanical system with given accuracy
\jour Avtomat. i Telemekh.
\yr 2012
\issue 12
\pages 65--88
\mathnet{http://mi.mathnet.ru/at4208}
\elib{https://elibrary.ru/item.asp?id=18237075}
\transl
\jour Autom. Remote Control
\yr 2012
\vol 73
\issue 12
\pages 2001--2020
\crossref{https://doi.org/10.1134/S0005117912120065}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312578800006}
Linking options:
https://www.mathnet.ru/eng/at4208
https://www.mathnet.ru/eng/at/y2012/i12/p65
This publication is cited in the following 1 articles:
A. S. Antipov, S. A. Krasnova, V. A. Utkin, “Synthesis of invariant nonlinear single-channel sigmoid feedback tracking systems ensuring given tracking accuracy”, Autom. Remote Control, 83:1 (2022), 32–53