Abstract:
In the coordination/consensus problem for multi-agent systems, a well-known condition of achieving consensus is the presence of a spanning arborescence in the communication digraph. The paper deals with the discrete consensus problem in the case where this condition is not satisfied. A characterization of the subspace TP of initial opinions (where P is the influence matrix) that ensure consensus in the DeGroot model is given. We propose a method of coordination that consists of: (1) the transformation of the vector of initial opinions into a vector belonging to TP by orthogonal projection and (2) subsequent iterations of the transformation P. The properties of this method are studied. It is shown that for any non-periodic stochastic matrix P, the resulting matrix of the orthogonal projection method can be treated as a regularized power limit of P.
Presented by the member of Editorial Board:B. T. Polyak
Citation:
R. P. Agaev, P. Yu. Chebotarev, “The projection method for reaching consensus and the regularized power limit of a stochastic matrix”, Avtomat. i Telemekh., 2011, no. 12, 38–59; Autom. Remote Control, 72:12 (2011), 2458–2476
\Bibitem{AgaChe11}
\by R.~P.~Agaev, P.~Yu.~Chebotarev
\paper The projection method for reaching consensus and the regularized power limit of a~stochastic matrix
\jour Avtomat. i Telemekh.
\yr 2011
\issue 12
\pages 38--59
\mathnet{http://mi.mathnet.ru/at3087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2933430}
\zmath{https://zbmath.org/?q=an:06194163}
\transl
\jour Autom. Remote Control
\yr 2011
\vol 72
\issue 12
\pages 2458--2476
\crossref{https://doi.org/10.1134/S0005117911120034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298294400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855849827}
Linking options:
https://www.mathnet.ru/eng/at3087
https://www.mathnet.ru/eng/at/y2011/i12/p38
This publication is cited in the following 25 articles:
R. P. Agaev, D. K. Khomutov, “On the properties of orthogonal projection method for reaching consensus”, Autom. Remote Control, 84:5 (2023), 513–526
R. P. Agaev, D. K. Khomutov, “On the Properties of Orthogonal Projection Method for Reaching Consensus”, Autom Remote Control, 84:5 (2023), 457
L. Yu. Zhilyakova, N. V. Chaplinskaya, “Issledovanie polnykh odnorodnykh resursnykh setei s «zhadnymi» vershinami”, UBS, 89 (2021), 5–44
N. V. Chaplinskaya, “Issledovanie polnykh odnorodnykh resursnykh setei s «zhadnymi» vershinami: zona «dostatochnogo bolshogo» resursa”, UBS, 90 (2021), 49–66
D. A. Gubanov, I. V. Petrov, “Information communities in social networks. Part II: Networked models of formation”, Control Sciences, 2 (2022), 16–28
N. V. Chaplinskaya, “Issledovanie ergodicheskikh neodnorodnykh resursnykh setei s «zhadnymi» vershinami”, UBS, 93 (2021), 5–50
Rafig Agaev, Dmitriy Khomutov, 2021 14th International Conference Management of large-scale system development (MLSD), 2021, 1
L. Yu. Zhilyakova, “Resource Network with Limited Capacity of Attractor Vertices”, Autom Remote Control, 80:3 (2019), 543
Denis Fedyanin, Albina Giliazova, 2019 Twelfth International Conference “Management of large-scale system development” (MLSD), 2019, 1
Alexander G. Chkhartishvili, Dmitry A. Gubanov, 2018 Eleventh International Conference “Management of large-scale system development” (MLSD, 2018, 1
R. P. Agaev, P. Yu. Chebotarev, “Models of latent consensus”, Autom. Remote Control, 78:1 (2017), 88–99
L. Yu. Zhilyakova, “Resursnye seti s ogranicheniyami na emkost attraktorov. Formalnye kharakteristiki”, UBS, 59 (2016), 72–119
D. N. Fedyanin, A. G. Chkhartishvili, “Consensus in social networks with complex structure of social actors”, Autom. Remote Control, 79:6 (2018), 1117–1124
L. Yu. Zhilyakova, “Dynamic graph models and their properties”, Autom. Remote Control, 76:8 (2015), 1417–1435
R. P. Agaev, P. Yu. Chebotarev, “The projection method for continuous-time consensus seeking”, Autom. Remote Control, 76:8 (2015), 1436–1445
L. Yu. Zhilyakova, “Resursnaya set s ogranicheniem na emkost attraktorov”, UBS, 58 (2015), 67–89
Chebotarev P., Agaev R., “the Forest Consensus Theorem”, IEEE Trans. Autom. Control, 59:9 (2014), 2475–2479
P. Yu. Chebotarev, R. P. Agaev, “Ob asimptotike v modelyakh konsensusa”, UBS, 43 (2013), 55–77
Pavel Chebotarev, Rafig Agaev, “The Projection Method for Reaching Consensus in Discrete-time Multiagent Systems”, IFAC Proceedings Volumes, 46:9 (2013), 1158
Pavel Chebotarev, Rafig Agaev, “The forest consensus theorem and asymptotic properties of coordination protocols”, IFAC Proceedings Volumes, 46:27 (2013), 95