Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2011, Issue 12, Pages 38–59 (Mi at3087)  

This article is cited in 25 scientific papers (total in 25 papers)

Stochastic Systems, Queuing Systems

The projection method for reaching consensus and the regularized power limit of a stochastic matrix

R. P. Agaev, P. Yu. Chebotarev

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: In the coordination/consensus problem for multi-agent systems, a well-known condition of achieving consensus is the presence of a spanning arborescence in the communication digraph. The paper deals with the discrete consensus problem in the case where this condition is not satisfied. A characterization of the subspace TP of initial opinions (where P is the influence matrix) that ensure consensus in the DeGroot model is given. We propose a method of coordination that consists of: (1) the transformation of the vector of initial opinions into a vector belonging to TP by orthogonal projection and (2) subsequent iterations of the transformation P. The properties of this method are studied. It is shown that for any non-periodic stochastic matrix P, the resulting matrix of the orthogonal projection method can be treated as a regularized power limit of P.
Presented by the member of Editorial Board: B. T. Polyak

Received: 22.02.2011
English version:
Automation and Remote Control, 2011, Volume 72, Issue 12, Pages 2458–2476
DOI: https://doi.org/10.1134/S0005117911120034
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: R. P. Agaev, P. Yu. Chebotarev, “The projection method for reaching consensus and the regularized power limit of a stochastic matrix”, Avtomat. i Telemekh., 2011, no. 12, 38–59; Autom. Remote Control, 72:12 (2011), 2458–2476
Citation in format AMSBIB
\Bibitem{AgaChe11}
\by R.~P.~Agaev, P.~Yu.~Chebotarev
\paper The projection method for reaching consensus and the regularized power limit of a~stochastic matrix
\jour Avtomat. i Telemekh.
\yr 2011
\issue 12
\pages 38--59
\mathnet{http://mi.mathnet.ru/at3087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2933430}
\zmath{https://zbmath.org/?q=an:06194163}
\transl
\jour Autom. Remote Control
\yr 2011
\vol 72
\issue 12
\pages 2458--2476
\crossref{https://doi.org/10.1134/S0005117911120034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298294400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855849827}
Linking options:
  • https://www.mathnet.ru/eng/at3087
  • https://www.mathnet.ru/eng/at/y2011/i12/p38
  • This publication is cited in the following 25 articles:
    1. R. P. Agaev, D. K. Khomutov, “On the properties of orthogonal projection method for reaching consensus”, Autom. Remote Control, 84:5 (2023), 513–526  mathnet  crossref  crossref
    2. R. P. Agaev, D. K. Khomutov, “On the Properties of Orthogonal Projection Method for Reaching Consensus”, Autom Remote Control, 84:5 (2023), 457  crossref
    3. L. Yu. Zhilyakova, N. V. Chaplinskaya, “Issledovanie polnykh odnorodnykh resursnykh setei s «zhadnymi» vershinami”, UBS, 89 (2021), 5–44  mathnet  crossref  elib
    4. N. V. Chaplinskaya, “Issledovanie polnykh odnorodnykh resursnykh setei s «zhadnymi» vershinami: zona «dostatochnogo bolshogo» resursa”, UBS, 90 (2021), 49–66  mathnet  crossref  elib
    5. D. A. Gubanov, I. V. Petrov, “Information communities in social networks. Part II: Networked models of formation”, Control Sciences, 2 (2022), 16–28  mathnet  crossref  crossref
    6. N. V. Chaplinskaya, “Issledovanie ergodicheskikh neodnorodnykh resursnykh setei s «zhadnymi» vershinami”, UBS, 93 (2021), 5–50  mathnet  crossref
    7. Rafig Agaev, Dmitriy Khomutov, 2021 14th International Conference Management of large-scale system development (MLSD), 2021, 1  crossref
    8. L. Yu. Zhilyakova, “Resource Network with Limited Capacity of Attractor Vertices”, Autom Remote Control, 80:3 (2019), 543  crossref
    9. Denis Fedyanin, Albina Giliazova, 2019 Twelfth International Conference “Management of large-scale system development” (MLSD), 2019, 1  crossref
    10. Alexander G. Chkhartishvili, Dmitry A. Gubanov, 2018 Eleventh International Conference “Management of large-scale system development” (MLSD, 2018, 1  crossref
    11. R. P. Agaev, P. Yu. Chebotarev, “Models of latent consensus”, Autom. Remote Control, 78:1 (2017), 88–99  mathnet  crossref  mathscinet  isi  elib
    12. L. Yu. Zhilyakova, “Resursnye seti s ogranicheniyami na emkost attraktorov. Formalnye kharakteristiki”, UBS, 59 (2016), 72–119  mathnet  elib
    13. D. N. Fedyanin, A. G. Chkhartishvili, “Consensus in social networks with complex structure of social actors”, Autom. Remote Control, 79:6 (2018), 1117–1124  mathnet  crossref  isi  elib
    14. L. Yu. Zhilyakova, “Dynamic graph models and their properties”, Autom. Remote Control, 76:8 (2015), 1417–1435  mathnet  crossref  isi  elib  elib
    15. R. P. Agaev, P. Yu. Chebotarev, “The projection method for continuous-time consensus seeking”, Autom. Remote Control, 76:8 (2015), 1436–1445  mathnet  crossref  isi  elib  elib
    16. L. Yu. Zhilyakova, “Resursnaya set s ogranicheniem na emkost attraktorov”, UBS, 58 (2015), 67–89  mathnet  elib
    17. Chebotarev P., Agaev R., “the Forest Consensus Theorem”, IEEE Trans. Autom. Control, 59:9 (2014), 2475–2479  crossref  mathscinet  zmath  isi  elib  scopus
    18. P. Yu. Chebotarev, R. P. Agaev, “Ob asimptotike v modelyakh konsensusa”, UBS, 43 (2013), 55–77  mathnet
    19. Pavel Chebotarev, Rafig Agaev, “The Projection Method for Reaching Consensus in Discrete-time Multiagent Systems”, IFAC Proceedings Volumes, 46:9 (2013), 1158  crossref
    20. Pavel Chebotarev, Rafig Agaev, “The forest consensus theorem and asymptotic properties of coordination protocols”, IFAC Proceedings Volumes, 46:27 (2013), 95  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:586
    Full-text PDF :155
    References:76
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025