Abstract:
The paper is devoted to multiple solutions of the classical problem on stationary configurations of an elastic rod on a plane; we describe boundary values for which there are more than two optimal configurations of a rod (optimal elasticae). We define sets of points where three or four optimal elasticae come together with the same value of elastic energy. We study all configurations that can be translated into each other by symmetries, i.e., reflections at the center of the elastica chord and reflections at the middle perpendicular to the elastica chord. For the first symmetry, the ends of the rod are directed in opposite directions, and the corresponding boundary values lie on a disk. For the second symmetry, the boundary values lie on a Möbius strip. As a result, we study both sets numerically and in some cases analytically; in each case, we find sets of points with several optimal configurations of the rod. These points form the currently known part of the reachability set where elasticae lose global optimality.
\Bibitem{Ard18}
\by A.~A.~Ardentov
\paper Multiple solutions in Euler's elastic problem
\jour Avtomat. i Telemekh.
\yr 2018
\issue 7
\pages 22--40
\mathnet{http://mi.mathnet.ru/at14881}
\elib{https://elibrary.ru/item.asp?id=35754481}
\transl
\jour Autom. Remote Control
\yr 2018
\vol 79
\issue 7
\pages 1191--1206
\crossref{https://doi.org/10.1134/S0005117918070020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000438654700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050002995}
Linking options:
https://www.mathnet.ru/eng/at14881
https://www.mathnet.ru/eng/at/y2018/i7/p22
This publication is cited in the following 9 articles:
Chen J.-S., Liao T.-Y., “Spatial and Planar Deformations of a Thin Elastic Wire Under Prescribed End Rotations”, Int. J. Solids Struct., 234 (2022), 111256
A. V. Podobryaev, “Construction of Maxwell Points in Left-Invariant Optimal Control Problems”, Proc. Steklov Inst. Math., 315 (2021), 190–197
J.-S. Chen, T.-Y. Liao, “Snap boundary of self-contacted planar elastica under prescribed end rotations”, Int. J. Non-Linear Mech., 134 (2021), 103748
A. V. Podobryaev, “Symmetries in left-invariant optimal control problems”, Sb. Math., 211:2 (2020), 275–290
P. Bozek, Yu. L. Karavaev, A. A. Ardentov, K. S. Yefremov, “Neural network control of a wheeled mobile robot based on optimal trajectories”, Int. J. Adv. Robot. Syst., 17:2 (2020), 1729881420916077
A. Cazzolli, F. Dal Corso, “Snapping of elastic strips with controlled ends”, Int. J. Solids Struct., 162 (2019), 285–303
Andrey A. Ardentov, Yury L. Karavaev, Kirill S. Yefremov, “Euler Elasticas for Optimal Control of the Motion of Mobile Wheeled Robots: the Problem of Experimental Realization”, Regul. Chaotic Dyn., 24:3 (2019), 312–328
A. A. Ardentov, “Hidden Maxwell Stratum in Euler's Elastic Problem”, Rus. J. Nonlin. Dyn., 15:4 (2019), 409–414
A. V. Podobryaev, “Symmetric Extremal Trajectories in Left-Invariant Optimal Control Problems”, Rus. J. Nonlin. Dyn., 15:4 (2019), 569–575