Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2017, Issue 2, Pages 36–49 (Mi at14682)  

This article is cited in 37 scientific papers (total in 37 papers)

Stochastic Systems, Queuing Systems

Stochastic online optimization. Single-point and multi-point non-linear multi-armed bandits. Convex and strongly-convex case

A. V. Gasnikovab, E. A. Krymovab, A. A. Lagunovskayaca, I. N. Usmanovaab, F. A. Fedorenkoa

a Moscow Institute of Physics and Technology (State University), Moscow, Russia
b Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
c Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: In this paper the gradient-free modification of the mirror descent method for convex stochastic online optimization problems is proposed. The crucial assumption in the problem setting is that function realizations are observed with minor noises. The aim of this paper is to derive the convergence rate of the proposed methods and to determine a noise level which does not significantly affect the convergence rate.
Keywords: online optimization, gradient-free, inexact oracle, stochastic optimization.
Funding agency Grant number
Russian Foundation for Basic Research 15-31-20571 мол_а_вед
Russian Science Foundation 14-50-00150
This work was supported by the Russian Foundation for Basic Research, project no. 15-31-20571 mol_a_ved. The work of the first two authors was partially supported by the Russian Science Foundation, project no. 14-50-00150 in Institute for Information Transmission Problems of the Russian Academy of Sciences.
Presented by the member of Editorial Board: P. S. Shcherbakov

Received: 16.10.2014
English version:
Automation and Remote Control, 2017, Volume 78, Issue 2, Pages 224–234
DOI: https://doi.org/10.1134/S0005117917020035
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Gasnikov, E. A. Krymova, A. A. Lagunovskaya, I. N. Usmanova, F. A. Fedorenko, “Stochastic online optimization. Single-point and multi-point non-linear multi-armed bandits. Convex and strongly-convex case”, Avtomat. i Telemekh., 2017, no. 2, 36–49; Autom. Remote Control, 78:2 (2017), 224–234
Citation in format AMSBIB
\Bibitem{GasKryLag17}
\by A.~V.~Gasnikov, E.~A.~Krymova, A.~A.~Lagunovskaya, I.~N.~Usmanova, F.~A.~Fedorenko
\paper Stochastic online optimization. Single-point and multi-point non-linear multi-armed bandits. Convex and strongly-convex case
\jour Avtomat. i Telemekh.
\yr 2017
\issue 2
\pages 36--49
\mathnet{http://mi.mathnet.ru/at14682}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3665422}
\elib{https://elibrary.ru/item.asp?id=28903782}
\transl
\jour Autom. Remote Control
\yr 2017
\vol 78
\issue 2
\pages 224--234
\crossref{https://doi.org/10.1134/S0005117917020035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394288900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85012201490}
Linking options:
  • https://www.mathnet.ru/eng/at14682
  • https://www.mathnet.ru/eng/at/y2017/i2/p36
  • This publication is cited in the following 37 articles:
    1. Yuanhanqing Huang, Jianghai Hu, “Zeroth-Order Learning in Continuous Games via Residual Pseudogradient Estimates”, IEEE Trans. Automat. Contr., 70:4 (2025), 2258  crossref
    2. Yan Zhang, Michael M. Zavlanos, “Cooperative Multiagent Reinforcement Learning With Partial Observations”, IEEE Trans. Automat. Contr., 69:2 (2024), 968  crossref
    3. A. V. Gasnikov, A. V. Lobanov, F. S. Stonyakin, “Highly Smooth Zeroth-Order Methods for Solving Optimization Problems under the PL Condition”, Comput. Math. and Math. Phys., 64:4 (2024), 739  crossref
    4. Wouter Jongeneel, Man-Chung Yue, Daniel Kuhn, “Small Errors in Random Zeroth-Order Optimization Are Imaginary”, SIAM J. Optim., 34:3 (2024), 2638  crossref
    5. Alexander Gasnikov, Darina Dvinskikh, Pavel Dvurechensky, Eduard Gorbunov, Aleksandr Beznosikov, Alexander Lobanov, Encyclopedia of Optimization, 2024, 1  crossref
    6. Yan Zhang, Yi Zhou, Kaiyi Ji, Yi Shen, Michael M. Zavlanos, “Boosting One-Point Derivative-Free Online Optimization via Residual Feedback”, IEEE Trans. Automat. Contr., 69:9 (2024), 6309  crossref
    7. Andrey Veprikov, Alexander Bogdanov, Vladislav Minashkin, Aleksandr Beznosikov, “New aspects of black box conditional gradient: Variance reduction and one point feedback”, Chaos, Solitons & Fractals, 189 (2024), 115654  crossref
    8. G. K. Bychkov, D. M. Dvinskikh, A. V. Antsiferova, A. V. Gasnikov, A. V. Lobanov, “Accelerated Zero-Order SGD under High-Order Smoothness and Overparameterized Regime”, Rus. J. Nonlin. Dyn., 20:5 (2024), 759–788  mathnet  crossref
    9. Pavel Dvurechensky, Alexander Gasnikov, Alexander Tyurin, Vladimir Zholobov, Springer Proceedings in Mathematics & Statistics, 425, Foundations of Modern Statistics, 2023, 511  crossref
    10. B. A. Alashkar, A. V. Gasnikov, D. M. Dvinskikh, A. V. Lobanov, “Gradient-free federated learning methods with l1 and l2-randomization for non-smooth convex stochastic optimization problems”, Comput. Math. Math. Phys., 63:9 (2023), 1600–1653  mathnet  mathnet  crossref  crossref
    11. Oleg Savchuk, Fedor Stonyakin, Mohammad Alkousa, Rida Zabirova, Alexander Titov, Alexander Gasnikov, Communications in Computer and Information Science, 1881, Mathematical Optimization Theory and Operations Research: Recent Trends, 2023, 29  crossref
    12. Aleksandr Lobanov, Andrew Veprikov, Georgiy Konin, Aleksandr Beznosikov, Alexander Gasnikov, Dmitry Kovalev, “Non-smooth setting of stochastic decentralized convex optimization problem over time-varying Graphs”, Comput Manag Sci, 20:1 (2023)  crossref
    13. Aleksandr Lobanov, Lecture Notes in Computer Science, 14395, Optimization and Applications, 2023, 60  crossref
    14. Nikita Kornilov, Alexander Gasnikov, Pavel Dvurechensky, Darina Dvinskikh, “Gradient-free methods for non-smooth convex stochastic optimization with heavy-tailed noise on convex compact”, Comput Manag Sci, 20:1 (2023)  crossref
    15. Raghu Bollapragada, Stefan M. Wild, “Adaptive sampling quasi-Newton methods for zeroth-order stochastic optimization”, Math. Prog. Comp., 15:2 (2023), 327  crossref
    16. Balasubramanian K., Ghadimi S., “Zeroth-Order Nonconvex Stochastic Optimization: Handling Constraints, High Dimensionality, and Saddle Points”, Found. Comput. Math., 22:1 (2022), 35–76  crossref  isi
    17. A. I. Bazarova, A. N. Beznosikov, A. V. Gasnikov, “Linearly convergent gradient-free methods for minimization of parabolic approximation”, Kompyuternye issledovaniya i modelirovanie, 14:2 (2022), 239–255  mathnet  crossref
    18. Abhishek Roy, Lingqing Shen, Krishnakumar Balasubramanian, Saeed Ghadimi, “Stochastic zeroth-order discretizations of Langevin diffusions for Bayesian inference”, Bernoulli, 28:3 (2022)  crossref
    19. Vasilii Novitskii, Alexander Gasnikov, “Improved exploitation of higher order smoothness in derivative-free optimization”, Optim Lett, 16:7 (2022), 2059  crossref
    20. Darina Dvinskikh, Vladislav Tominin, Iaroslav Tominin, Alexander Gasnikov, Lecture Notes in Computer Science, 13367, Mathematical Optimization Theory and Operations Research, 2022, 18  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:588
    Full-text PDF :153
    References:84
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025