Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2017, Issue 5, Pages 110–122 (Mi at14446)  

This article is cited in 13 scientific papers (total in 13 papers)

Data Analysis

A study of neural network Russian language models for automatic continuous speech recognition systems

I. S. Kipyatkovaab, A. A. Karpova

a St. Petersburg Institute for Informatics and Automation, Russian Academy of Sciences, St. Petersburg, Russia
b State University of Aerospace Instrumentation, St. Petersburg, Russia
References:
Abstract: We show the results of studying models of the Russian language constructed with recurrent artificial neural networks for systems of automatic recognition of continuous speech. We construct neural network models with different number of elements in the hidden layer and perform linear interpolation of neural network models with the baseline trigram language model. The resulting models were used at the stage of rescoring the N best list. In our experiments on the recognition of continuous Russian speech with extra-large vocabulary (150 thousands of word forms), the relative reduction in the word error rate obtained after rescoring the 50 best list with the neural network language models interpolated with the trigram model was 14 %.
Keywords: language models, neural networks, automatic speech recognition, Russian speech.
Funding agency Grant number
Russian Foundation for Basic Research 15-07-04322
15-07-04415
16-37-60100
Ministry of Education and Science of the Russian Federation МК-1000.2017.8
МД-254.2017.8
Russian Academy of Sciences - Federal Agency for Scientific Organizations 0073-2014-0005
This work was supported by the Russian Foundation for Basic Research, projects nos. 15-07-04322, 15-07-04415, and 16-37-60100, Russian President grants nos. MK-1000.2017.8 and MD-254.2017.8, and the budget topic 0073-2014-0005.
Presented by the member of Editorial Board: V. I. Vasil'ev

Received: 28.04.2016
English version:
Automation and Remote Control, 2017, Volume 78, Issue 5, Pages 858–867
DOI: https://doi.org/10.1134/S0005117917050083
Bibliographic databases:
Document Type: Article
PACS: 43.72.+q
MSC: 68T50
Language: Russian
Citation: I. S. Kipyatkova, A. A. Karpov, “A study of neural network Russian language models for automatic continuous speech recognition systems”, Avtomat. i Telemekh., 2017, no. 5, 110–122; Autom. Remote Control, 78:5 (2017), 858–867
Citation in format AMSBIB
\Bibitem{KipKar17}
\by I.~S.~Kipyatkova, A.~A.~Karpov
\paper A study of neural network Russian language models for automatic continuous speech recognition systems
\jour Avtomat. i Telemekh.
\yr 2017
\issue 5
\pages 110--122
\mathnet{http://mi.mathnet.ru/at14446}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3670964}
\elib{https://elibrary.ru/item.asp?id=29206988}
\transl
\jour Autom. Remote Control
\yr 2017
\vol 78
\issue 5
\pages 858--867
\crossref{https://doi.org/10.1134/S0005117917050083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401992300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019750824}
Linking options:
  • https://www.mathnet.ru/eng/at14446
  • https://www.mathnet.ru/eng/at/y2017/i5/p110
  • This publication is cited in the following 13 articles:
    1. Amandeep Singh Dhanjal, Williamjeet Singh, “A comprehensive survey on automatic speech recognition using neural networks”, Multimed Tools Appl, 83:8 (2023), 23367  crossref
    2. Abdinabi Mukhamadiyev, Mukhriddin Mukhiddinov, Ilyos Khujayarov, Mannon Ochilov, Jinsoo Cho, “Development of Language Models for Continuous Uzbek Speech Recognition System”, Sensors, 23:3 (2023), 1145  crossref
    3. Wolk K., Wolk A., Wnuk D., Grzes T., Skubis I., “Survey on Dialogue Systems Including Slavic Languages”, Neurocomputing, 477 (2022), 62–84  crossref  isi
    4. Ashok Sharma, Ravindra Parshuram Bachate, Parveen Singh, Vinod Kumar, Ravi Kant Kumar, Amar Singh, Madan Kadariya, Praveen Kumar Reddy Maddikunta, “Parallel Big Bang-Big Crunch-LSTM Approach for Developing a Marathi Speech Recognition System”, Mobile Information Systems, 2022 (2022), 1  crossref
    5. Amitoj Singh, Navkiran Kaur, Vinay Kukreja, Virender Kadyan, Munish Kumar, “Computational intelligence in processing of speech acoustics: a survey”, Complex Intell. Syst., 8:3 (2022), 2623  crossref
    6. Thimmaraja Yadava G., Jayanna H.S., “Enhancements in Automatic Kannada Speech Recognition System By Background Noise Elimination and Alternate Acoustic Modelling”, Int. J. Speech Technol., 23:1 (2020), 149–167  crossref  isi
    7. P. S. Praveen Kumar, G. Thimmaraja Yadava, H. S. Jayanna, “Continuous kannada speech recognition system under degraded condition”, Circuits Syst. Signal Process., 39:1 (2020), 391–419  crossref  isi
    8. I. Kagirov, D. A. Ryumin, A. A. Axyonov, A. A. Karpov, “Multimedia database of russian sign language items in 3D”, Vopr. Yazykoznaniya, 2020, no. 1, 104–123  crossref  isi
    9. L. V. Savchenko, A. V. Savchenko, “Fuzzy phonetic encoding of speech signals in voice processing systems”, J. Commun. Technol. Electron., 64:3 (2019), 238–244  crossref  isi
    10. A. V. Zolotaryuk, V. I. Zavgorodniy, O. Yu. Gorodetskaya, “Intellectual prediction of student performance: opportunities and results”, Proceedings of the 1St International Scientific Conference Modern Management Trends and the Digital Economy: From Regional Development to Global Economic Growth (Mtde 2019), Aebmr-Advances in Economics Business and Management Research, 81, ed. A. Nazarov, Atlantis Press, 2019, 555–559  isi
    11. L. Pipiras, R. Maskeliunas, R. Damasevicius, “Lithuanian speech recognition using purely phonetic deep learning”, Computers, 8:4 (2019), 76  crossref  mathscinet  isi  scopus
    12. Thimmaraja Yadava G., H.S. Jayanna, 2019 4th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT), 2019, 146  crossref
    13. Irina Kipyatkova, Lecture Notes in Computer Science, 10458, Speech and Computer, 2017, 362  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:1121
    Full-text PDF :96
    References:38
    First page:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025