Abstract:
We solve the problem of constructing extended finite state machines with execution scenarios and temporal formulas. We propose a new algorithm pstMuACO that combines a scenario filtering procedure, an exact algorithm efsmSAT for constructing finite state machines from execution scenarios based on a reduction to the Boolean satisfiability problem, and a parallel ant colony algorithm pMuACO. Experiments show that constructing several initial solutions for the ant colony algorithm with reduced sets of scenarios significantly reduces the total time needed to find optimal solutions. The proposed algorithm can be used for automated construction of reliable control systems.
Citation:
D. S. Chivilikhin, V. I. Ulyantsev, A. A. Shalyto, “Modified ant colony algorithm for constructing finite state machines from execution scenarios and temporal formulas”, Avtomat. i Telemekh., 2016, no. 3, 137–151; Autom. Remote Control, 77:3 (2016), 473–484
\Bibitem{ChiUlySha16}
\by D.~S.~Chivilikhin, V.~I.~Ulyantsev, A.~A.~Shalyto
\paper Modified ant colony algorithm for constructing finite state machines from execution scenarios and temporal formulas
\jour Avtomat. i Telemekh.
\yr 2016
\issue 3
\pages 137--151
\mathnet{http://mi.mathnet.ru/at14407}
\elib{https://elibrary.ru/item.asp?id=25996295}
\transl
\jour Autom. Remote Control
\yr 2016
\vol 77
\issue 3
\pages 473--484
\crossref{https://doi.org/10.1134/S0005117916030097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373345900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962418012}
Linking options:
https://www.mathnet.ru/eng/at14407
https://www.mathnet.ru/eng/at/y2016/i3/p137
This publication is cited in the following 4 articles:
Z. Huo, W. Zhu, P. Pei, “Network traffic statistics method for resource-constrained industrial project group scheduling under big data”, Wirel. Commun. Mob. Comput., 2021 (2021), 5594663
A. O. Bassin, M. V. Buzdalov, A. A. Shalyto, “The “One-Fifth Rule” with Rollbacks for Self-Adjustment of the Population Size in the (1 + (λ, λ)) Genetic Algorithm”, Aut. Control Comp. Sci., 55:7 (2021), 885
A. O. Basin, M. V. Buzdalov, A. A. Shalyto, “Pravilo «odnoi pyatoi» s vozvratami dlya nastroiki razmera populyatsii v geneticheskom algoritme (1+(λ,λ))(1+(λ,λ))”, Model. i analiz inform. sistem, 27:4 (2020), 488–508
Lopez-Ibanez M., Dubois-Lacoste J., Caceres L.P., Birattari M., Stutzle T., “the Irace Package: Iterated Racing For Automatic Algorithm Configuration”, Oper. Res. Perspect., 3 (2016), 43–58